Effects of Wettability and Minerals on Residual Oil Distributions Based on Digital Rock and Machine Learning

Author:

Zhang Yimin123ORCID,Lin Chengyan123ORCID,Wu Yuqi123,Ren Lihua123,An Senyou4

Affiliation:

1. 1 Shandong Provincial Key Laboratory of Reservoir Geology China University of Petroleum (East China) Qingdao 266580 China cup.edu.cn

2. 2 Shandong Provincial Key Laboratory of Deep oil & Gas China University of Petroleum (East China) Qingdao 266580 China cup.edu.cn

3. 3 School of Geosciences China University of Petroleum (East China) Qingdao 266580 China cup.edu.cn

4. 4 Department of Earth Science and Engineering Imperial College London London SW7 2AZ UK imperial.ac.uk

Abstract

Abstract The wettability of mineral surfaces has significant impacts on transport mechanisms of two-phase flow, distribution characteristics of fluids, and the formation mechanisms of residual oil during water flooding. However, few studies have investigated such effects of mineral type and its surface wettability on rock properties in the literature. To unravel the dependence of hydrodynamics on wettability and minerals distribution, we designed a new experimental procedure that combined the multiphase flow experiments with a CT scan and QEMSCAN to obtain 3D digital models with multiple minerals and fluids. With the aid of QEMSCAN, six mineral components and two fluids in sandstones were segmented from the CT data based on the histogram threshold and watershed methods. Then, a mineral surface analysis algorithm was proposed to extract the mineral surface and classify its mineral categories. The in situ contact angle and pore occupancy were calculated to reveal the wettability variation of mineral surface and distribution characteristics of fluids. According to the shape features of the oil phase, the self-organizing map (SOM) method, one of the machine learning methods, was used to classify the residual oil into five types, namely, network, cluster, film, isolated, and droplet oil. The results indicate that each mineral’s contribution to the mineral surface is not proportional to its relative content. Feldspar, quartz, and clay are the main minerals in the studied sandstones and play a controlling role in the wettability variation. Different wettability samples show various characteristics of pore occupancy. The water flooding front of the weakly water-wet to intermediate-wet sample is uniform, and oil is effectively displaced in all pores with a long oil production period. The water-wet sample demonstrates severe fingering, with a high pore occupancy change rate in large pores and a short oil production period. The residual oil patterns gradually evolve from networks to clusters, isolated, and films due to the effects of snap-off and wettability inversion. This paper reveals the effects of wettability of mineral surface on the distribution characteristics and formation mechanisms of residual oil, which offers us an in-deep understanding of the impacts of wettability and minerals on multiphase flow and helps us make good schemes to improve oil recovery.

Funder

Jidong Oilfield Science and Technology Special Project

Major Scientific and Technological Projects of CNPC

Postdoctoral Application Research Project of Qingdao City

Fundamental Research Funds for the Central Universities

Support Program of China Postdoctoral Innovative Talents

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3