Response of Intertidal Foraminiferal Assemblages to Salinity Changes in a Laboratory Culture Experiment

Author:

Li Meng12,Lei Yanli1342,Li Tiegang5,Dong Shuaishuai1

Affiliation:

1. Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China

2. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China

3. Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237, PR China

4. University of Chinese Academy of Sciences, Beijing 100049, PR China

5. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, MNR, Qingdao 266061, PR China

Abstract

Abstract This study explored the response to salinity of intertidal foraminiferal assemblages from the Yellow Sea by culturing them for 100 days at six constant salinity levels (17, 22, 27, 32, 37, and 42 psu) in laboratory microcosms with four replicates each. A total of 7,471 live (stained) foraminiferal specimens were obtained and analyzed. The diversity parameters of foraminiferal assemblages (species richness, Margalef index, Shannon-Wiener index, and Fisher's alpha) declined significantly when the salinity was increased or decreased from the field value, but foraminiferal abundance was highly resistant to salinity. In addition, salinity exerted different effects on foraminifera from different orders. Specifically, the proportion of species from Order Miliolida significantly increased whereas that of species from Order Rotaliida decreased with increasing salinity. High salinity-tolerant species Ammonia aomoriensis, Cribrononion gnythosuturatum, Ammonia tepida, and Quinqueloculina seminula could fill unoccupied ecological niches when the proportion of salinity-sensitive species has declined. Furthermore, our morphometric results showed that foraminiferal test size was significantly negatively correlated with salinity, and numerous abnormal specimens appeared in foraminiferal assemblages when salinity deviated from the field value. Our study revealed that intertidal foraminiferal assemblages had high adaptability at different salinities because of the existence of high salinity-tolerant dominant species. In addition, salinity variation can significantly alter foraminiferal morphology in test size and abnormality.

Publisher

GeoScienceWorld

Subject

Paleontology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3