Features of Mineral Crystallization at Different Stages of the Magmatism Evolution of the Gorely Volcano (Kamchatka): Data on Melt and Fluid Inclusions

Author:

Simonov V.A.123,Dobretsov N.L.42,Kotlyarov A.V.13,Karmanov N.S.1,Borovikov A.A.1

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russia

3. Kazan Federal University, ul. Kremlevskaya 18, Kazan, 420008, Russia

4. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

Abstract

Abstract ––Studies of melt and fluid inclusions and minerals as well as computational modeling (based on the data on the composition of melt inclusions, clinopyroxenes, and amphiboles) gave an insight into the physicochemical parameters of magmatic systems during the evolution of the precaldera Pra-Gorely Volcano and during the subsequent formation of rock complexes of the Young Gorely Volcano. The estimated temperatures of crystallization of olivine, clinopyroxene, and plagioclase phenocrysts (1115–1260 °С) and amphibole (740–890 °С) are in agreement with the earlier published data on the magmatism of the Gorely Volcano. Computational modeling based on the compositions and homogenization temperatures of melt inclusions showed that the established depth interval of mineral crystallization (21.0–1.5 km) with pressures of 7.0–0.5 kbar can be divided into two ranges, 21–15 km and 9.0–1.5 km. Both the Pra-Gorely and Young Gorely volcanoes have magma chambers in these depth ranges. The Pra-Gorely Volcano is characterized by higher temperatures of mineral crystallization (1240–1190 °С) as compared with the Young Gorely Volcano (1190–1125 °С). The presence of primary fluid inclusions with low-density CO2 and of syngenetic primary melt inclusions in plagioclase of the Pra-Gorely Volcano indicates that the mineral crystallized from a heterophase melt. At the same time, the cores of plagioclase phenocrysts formed from a homogeneous melt. A drastic drop in pressure led to the phase separation of magma throughout the magma column (upper and lower chambers) and to the growth of zones saturated with CO2 fluid inclusions in the plagioclase crystals formed from a two-phase melt. The subsequent closure of the system and the disappearance of CO2 phase resulted in the growth of plagioclase from a homogeneous melt.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3