Velocity Structure and Deep Earthquakes beneath the Kinnaur, NW Himalaya: Constraints from Relocated Seismicity and Moment Tensor Analysis

Author:

Biswal Shubhasmita12ORCID,Kumar Sushil2ORCID,Priestley Keith3,Mohanty W. K.1,Parija Mahesh Prasad4ORCID

Affiliation:

1. Department of Geology and Geophysics Indian Institute of Technology Kharagpur Kharagpur 721302 India iitkgp.ac.in

2. Wadia Institute of Himalayan Geology Dehradun 248001 Uttarakhand India

3. Bullard Laboratories University of Cambridge Cambridge UK cam.ac.uk

4. National Geophysical Research Institute Hyderabad 500007 Telangana India ngri.org.in

Abstract

Abstract The optimum 1D velocity model is calculated for the Kinnaur sector of the NW Himalaya utilizing the arrival time information of the local earthquakes (137 no.) recorded with 12 broadband seismic network within the azimuthal gap of ≤180°. This optimum 1D velocity model is a five-layer model and ranges from the surface to 90 km in the shallow mantle. P velocity varies from 5.5 km/s to 8.6 km/s in the crust and upper mantle, and S-wave velocity varies between 3.2 km/s and 4.9 km/s for the same range. When we relocated the earthquakes with the Joint Hypocenter Determination program incorporating the optimum 1D velocity model, it resulted in a lower RMS residual error of 0.23 s for the hypocenter locations compared to initial hypo71 locations. A total of 1274 P and 1272 S arrival times were utilized to compute station delays. We observed positive variations in P-station delays from -0.19 s below the PULG station to 0.11 s below the SRHN station. Similarly, for S-station delays, we observed negative delays at each individual site from -0.65 s at LOSR station to -0.16 s at the SRHN station. This large variation in P- and S-station delays corresponds to the 3D nature of the subsurface below the Kinnaur Himalaya. The relocated seismicity is clustered along the STD fault at sub-Moho and Moho depths ranging between 40 km and 80 km. The seismicity distribution aligned across the strike of the STD and along the strike of the Kaurik-Chango fault (KCF) can be attributed to the cross-fault interactions of the KCF and the STD fault in the area. We also observed bimodal depth distribution of seismicity in the Higher and Tethys Himalayas. The occurrence of earthquakes down to a depth of ~0-40 km and 50-80 km in the study area can be interpreted in terms of stress contribution from interseismic stress loading associated with the India-Eurasia collision tectonics. The presence of hypocentres in the shallow mantle at 120 km depth highlights the strength of the mantle, which seems to be deforming in a brittle manner below the region. The computed focal mechanisms exhibit generally the flexing of the Indian plate below the Lesser Himalaya with shear parallel to the strike of the MCT and extension orthogonal to it. This study shows deformation over the entire crust and shallow upper mantle levels, with differential stress conditions. Thus, we can consider the crust and the shallow upper mantle down to depths of 120 km to be seismogenic in nature and is capable of producing the microseismicity beneath the Kinnaur Himalaya.

Publisher

GeoScienceWorld

Subject

Geology

Reference63 articles.

1. Himalayas: the colliding range, present knowledge of the continental arc, 766;Le Fort;American Journal of Science,1975

2. Cenozoic tectonics of Asia: effects of a continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision;Molnar;Science,1975

3. Great detachmenet arthquakesa long the Himalayan arc and the long term forecasts;Seeber,1981

4. Characterizing the Main Himalayan thrust in the Garhwal Himalaya, India with receiver function CCP stacking;Caldwell;Earth and Planetary Science Letters,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3