Affiliation:
1. Department of Geological Sciences University of Alabama Tuscaloosa Alabama 35401 USA ua.edu
Abstract
Abstract
The lithosphere of the eastern Tibetan plateau is underlain by a low-velocity zone at shallow depths which is interpreted as asthenospheric material in the upper-most mantle in various seismic tomography studies. The driving mechanism for the presence of asthenospheric material in the upper-most mantle is not well understood, and the spatial extent of the asthenospheric material is not well delineated. We use 2.5D gravity models to assess what drove the asthenospheric flow upwards in the past and determine the lateral extent of the asthenospheric material in the upper-most mantle. The models also allow us to determine the Indian slab configuration below the Tibetan plateau. The gravity models show that lithospheric thickness increases from ~120 km in the central and eastern parts of the plateau to ~150 km in the west, indicating that the lithosphere in the central and eastern parts of the plateau may have been delaminated. The ~30 km shallower Lithosphere-Asthenosphere Boundary in the central and eastern Tibetan plateau may indicate that asthenospheric flow could have been induced in the past by a combination of lithospheric delamination and a slab break-off event of the Greater Indian slab. The spatial extent of the asthenospheric material in the upper-most mantle beneath the Tibetan plateau is ~15,000 km2 (N−S length=500 km and thickness=30 km) between 85°E and 88°E, which could even extend east of 92°E. The Indian slab is dipping more steeply in the east. The slab dip along the Indian plate increases from ~10° in the west to ~18° in the central (~87°E) and ~25° in the eastern part (~91°E) of the plateau, indicating that the style of lithospheric deformation changes from underthrusting to slab roll-back from west to east.
Funder
Department of Geological Sciences, The University of Alabama
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献