Using an Azimuth Electromagnetic Wave Imaging Method to Detect and Characterize Coal-seam Interfaces and Low-resistivity Anomalies

Author:

Chen Gang12,Fan Yiren1,Li Quanxi2

Affiliation:

1. School of Geosciences, China University of Petroleum(East China), 66 Changjiang West Road, Qingdao, 266580,China

2. China Coal Research Institute Xi'an Science and Industry Group, 82 Jinye Road, Xi'an, 710017, China

Abstract

It has been found that the traditionally used electromagnetic wave instruments have limitations in detection depths, as well as a lack of directionality. Therefore, those types of instruments cannot meet the needs of geo-steering applications. However, azimuth electromagnetic wave instruments have shown the ability to quickly acquire effective geo-steering information using a tilt coil design method, which can potentially provide accurate guidance for decision-making in drilling direction adjustments. In this study, a design method for an azimuth electromagnetic wave detection instrument for underground coal mining was proposed. The relationships between the structural parameters of the instrument and installation angles of the coils and the response signals were obtained in this study using simulations. Then, by choosing reasonable instrument spacings, coil installation angles, and transmitting frequencies, the detection performances of the instrument were successfully improved. Also, the basic parameter selections of the proposed logging-while-drilling azimuth electromagnetic wave logging instrument were determined to be suitable for underground coal-mining purposes. It was also found that the symmetric compensation of the instrument was sensitive to the interface responses, and the anti-symmetric compensation was sensitive to the anisotropic responses. In addition, a method of detecting the interface positions and azimuth of coal-seam interfaces using azimuth electromagnetic waves, as well as the potential for the application of the instrument for the detection of low-resistivity anomalies in coal goafs, were effectively demonstrated. The results of this study provided theoretical references for future coal-seam boundary detections and explorations, and also added insight into the development processes of coal-seam bedding.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3