Single Borehole Radar for Well Logging in a Limestone Formation: Experiments and Simulations

Author:

Ma Chunguang12,Zhao Qing32,Huo Jianjian3,Chang Xinghao4,Ran Limin4

Affiliation:

1. School of Resources and Environment, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China

2. Center for Information Geoscience, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China

3. School of Physical Electronics, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Rd, Chengdu 610054, China

4. Sinopec Huabei Petroleum Engineering Co., LTD, No. 199, West Longhai Ave, Zhongyuan Zone, Zhengzhou 450000, China

Abstract

A borehole radar (BHR) prototype system was developed for the exploration of complicated oil and gas reservoirs. To verify the performance of the system, single-hole reflection imaging experiments were carried out in an abandoned limestone mine. In the physical experiments, the cliff wall and a metal plate were selected as the imaging targets to evaluate the detection performance of the prototype system. The average filter method was used to remove the background noise, then the frequency–wave number (F-K) imaging algorithm was adopted for radar imaging. The unknown fractures surrounding the borehole produced complex reflections that were not beneficial to effectively extract the target echo when the down-hole sensor was shifted along the borehole. However, by fixing the down-hole sensor and shifting the target, the detection range of the radar system extended up to about 10 m in the limestone formation. A 2-D finite-difference time-domain (FDTD) modeling method was also implemented to simulate the experimental procedure, and demonstrated that the prototype system can provide enough accuracy to predict the echo signal characteristics and reproduce the radar response in the formation. The combination of field experiment, theoretical analysis, and numerical simulation not only objectively validated the fundamental performance of the radar prototype, but also generated some new concepts for further improvement on the radar system design.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3