A Decomposed Fracture Network Model for Characterizing Well Performance of Fracture Networks on the Basis of an Approximated Flow Equation

Author:

Liu Jiazheng1ORCID,Liu Xiaotong2ORCID,Zhu Hongzhang3,Ma Xiaofei3ORCID,Zhang Yuxue4ORCID,Zeng Jingying1ORCID,Luo Wanjing1ORCID,Teng Bailu1ORCID,Li Yang5ORCID,Nie Wan6ORCID

Affiliation:

1. School of Energy Resources China University of Geosciences (Beijing) Beijing 100083 China cugb.edu.cn

2. Lushang Oilfield Operation Area PetroChina Jidong Oilfield Company Tangshan 063004 China petrochina.com.cn

3. The Fifth Oil Production Plant Changqing Oil Field PetroChina Xi’an 710000 China petrochina.com.cn

4. Exploration & Production Research Institute Southwest Oil & Gas Branch Company Sinopec Chengdu 610041 China sinopecgroup.com

5. GWDC Drilling Engineering and Technology Research Institute Panjin 124000 China

6. Liaohe Oilfield Safety and Environment Protection Technology Supervision Center Panjin 124000 China

Abstract

Abstract The gridless analytical and semianalytical methodologies can provide credible solutions for describing the well performance of the fracture networks in a homogeneous reservoir. Reservoir heterogeneity, however, is common in unconventional reservoirs, and the productivity can vary significantly along the horizontal wells drilled for producing such reservoirs. It is oversimplified to treat the entire reservoir matrix as homogeneous if there are regions with extremely nonuniform properties in the reservoir. However, the existing analytical and semianalytical methods can only model simple cases involving matrix heterogeneity, such as composite, layered, or compartmentalized reservoirs. A semianalytical methodology, which can model fracture networks in heterogeneous reservoirs, is still absent; in this study, we propose a decomposed fracture network model to fill this gap. We discretize a fractured reservoir into matrix blocks that are bounded by the fractures and/or the reservoir boundary and upscale the local properties to these blocks; therefore, a heterogeneous reservoir can be represented with these blocks that have nonuniform properties. To obtain a general flow equation to characterize the transient flow in the blocks that may exhibit different geometries, we approximate the contours of pressure with the contours of the depth of investigation (DOI) in each block. Additionally, the borders of each matrix block represent the fractures in the reservoir; thus, we can characterize the configurations of complex fracture networks by assembling all the borders of the matrix blocks. This proposed model is validated against a commercial software (Eclipse) on a multistage hydraulic fracture model and a fracture network model; both a homogeneous case and a heterogeneous case are examined in each of these two models. For the heterogeneous case, we assign different permeabilities to the matrix blocks in an attempt to characterize the reservoir heterogeneity. The calculation results demonstrate that our new model can accurately simulate the well performance even when there is a high degree of permeability heterogeneity in the reservoir. Besides, if there are high-permeability regions existing in the fractured reservoir, a BDF may be observed in the early production period, and formation linear flow may be indistinguishable in the early production period because of the influence of reservoir heterogeneity.

Funder

Fundamental Research Funds for the Central Universities

Publisher

GeoScienceWorld

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3