Mesozoic Thermo-Tectonic Evolution of the Western Altai Orogenic Belt (NW China): Insights from Low-Temperature Thermochronology

Author:

Wu Mingxuan12,Yin Jiyuan2ORCID,He Zhiyuan3,Xiao Wenjiao45,Wang Yannan6,Chen Wen2,Wang Yamei12,Sun Jingbo2,Li Dapeng1,Meng Yun12

Affiliation:

1. 1 School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

2. 2 MNR Key Laboratory of Deep-Earth Dynamics, The Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

3. 3 Laboratory for Mineralogy and Petrology, Department of Geology, Ghent University, Ghent 9000, Belgium

4. 4 Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

5. 5 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

6. 6 Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan 056038, China

Abstract

Abstract The Meso-Cenozoic tectonic activities of the Central Asian Orogenic Belt (CAOB) played an important role in controlling the present-day topography of Central Asia. The Altai orogenic belt is a key component in the southern CAOB; so far, there is still a lack of sufficient constraints on the time and mechanism of its tectonic reactivation since the Mesozoic. In this contribution, we present new zircon and apatite (U-Th)/He and apatite fission track thermochronological data from granitoid samples in the Habahe area, western Altai orogenic belt. Therein zircon (U-Th)/He ages range from ~230 to ~238 Ma, apatite fission track central ages are ~140–157 Ma, and apatite (U-Th)/He ages vary from ~134 to ~149 Ma. Based on the associated thermal history modeling results, the Habahe area underwent a moderate cooling during the Late Triassic to Middle Jurassic (~230–170 Ma) with a cooling rate of ~0.8–1.1℃/Ma and a subsequent moderate to slightly rapid cooling stage during the Middle Jurassic to Early Cretaceous (170–130 Ma) with a cooling rate of ~1.5–2.3℃/Ma. We propose that this prolonged cooling stage occurred under a long-lasting contractional tectonism in the western Altai throughout the early Mesozoic, which was produced by multiplate convergence in East Asia during this period, mainly including the consumption of the Mongol-Okhotsk Ocean in the northeast and the Meso-Tethys Ocean in the south. The region experienced rather limited Late Cretaceous-Cenozoic cooling and exhumation due to insufficient reactivation and weak surficial erosion.

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3