Exhumation of Metamorphic Core Complexes through Progressive Subhorizontal Shearing, Doming, and Detachment Faulting: Insights from the Cretaceous Liaonan Metamorphic Core Complex, Eastern North China Craton

Author:

Zheng Yuanyuan1ORCID,Liu Junlai1ORCID,Hou Chunru1,Sun Yanqi1,Craddock John P.2

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources China University of Geosciences Beijing 100083 China cug.edu.cn

2. Geology Department Macalester College Saint Paul Minnesota 55105 USA macalester.edu

Abstract

Abstract The Early Cretaceous Liaonan metamorphic core complex (MCC), eastern North China craton, provides a field setting to evaluate progressive middle-upper crustal subhorizontal shearing, doming, and detachment faulting. The MCC is bounded by a western Jinzhou detachment fault zone (JDFZ) and a southern Dongjiagou shear zone (DSZ) that were primarily suggested to be two segments of the master detachment fault zone. Integrated structural, microstructural, quartz c-axis fabrics, and fluid inclusion analysis and zircon U-Pb dating on mylonites and syn-kinematic granites along the DSZ and JDFZ reveal that the DSZ possesses deformation characteristics that are obviously different from those along the JDFZ. The DSZ is composed of a Lower Unit of sheared Archean gneisses and an Upper Unit of sheared Neoproterozoic metasedimentary rocks, between which there is an obvious tectonic discontinuity contact (TDC). Rocks from below and above the TDC possess structures and fabrics with consistent geometries and kinematics with those along the JDFZ. A metamorphic break exists between the two units that were sheared at contrasting deformation conditions. Dating of zircons from syn-kinematic granitic dikes from DSZ yields an age of ca. 134 Ma, which is similar to the ages of early shearing along the JDFZ. It is concluded that the Jinzhou and Dongjiagou faults formed parts of a detachment faulting with top-to-the WNW kinematics. Exhumation of the Liaonan MCC shearing initiation along both the JDFZ and DSZ at an early stage (ca. 133~134 Ma), subsequent progressive shearing, and doming during slow cooling and exhumation before ca. 120 Ma, followed by fast cooling and rapid exhumation of the MCC by detachment faulting along the JDFZ until ca. 107 Ma.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3