Cristobalite Clinker and Paralavas of Ferroan and Melilite–Nepheline Types in the Khamaryn-Khural–Khiid Combustion Methamorphic Complex, East Mongolia: Formation Conditions and Processes

Author:

Savina E.A.1,Peretyazhko I.S.1

Affiliation:

1. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1A, Irkutsk, 664033, Russia,

Abstract

Abstract —Rock samples from the Khamaryn-Khural–Khiid combustion metamorphic (CM) complex, including cristobalite clinker, ferroan tridymite–sekaninaite and cristobalite–fayalite paralavas, which are rock types new to the complex, as well as clinker xenoliths in melilite–nepheline paralava, have been studied in terms of chemistry and mineralogy. The obtained data on rock-forming, minor, accessory, and rare phases (silica polymorphs, cordierite-group minerals, fayalite, Fe and Ti oxides, ferrosilite, etc.) have implications for the formation conditions and processes of the CM rocks. The Raman spectra of sekaninaite, indialite, ferroindialite, mullite, and anhydrous Fe–Ca–Mn phosphate, presumably from the graftonite group, have several specific features. The diversity of mineral assemblages in the CM rocks is due to heterogeneous lithology of the sedimentary protolith and to local effects in the multistage history of the Khamaryn-Khural–Khiid complex. According to geochemical data, all CM rocks of the complex are derived from the Early Cretaceous Dzunbain Formation, their protolith molten to different degrees. The cristobalite clinker and tridymite–sekaninaite and cristobalite–fayalite paralavas were produced by partial melting of pelitic rocks containing different amounts of iron in a wide temperature range. The formation of mullite developed from dehydration–dehydroxylation and incongruent partial melting of amorphous pelitic matter. Large-scale crystallization of mullite in clinker, occurred from the high-silica potassic aluminosilicate melt at >850 °C. Combustion of subsurface coal seams heated the overburden to >1050 °C or locally to >1300–1400 °C (melting point of detrital quartz) or even, possibly, to >1470 °C corresponding to the stability field of β-cristobalite. Melilite–nepheline paralava was formed by incongruent melting of silicate (pelitic) and carbonate (calcite) components of marly limestone under elevated CO2 partial pressure. Oxygen fugacity (fO2) during combustion metamorphism changed from strongly reducing conditions favorable for crystallization of Fe phosphides (barringerite, schreibersite) and metallic iron from silica-undersaturated melts parental to melilite–nepheline paralava to high fO2 values that can maintain the formation of hematite in Fe-rich CM rocks.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

Reference32 articles.

1. Indialite in xenolitic rocks from Somma-Vesuvius volcano (Southern Italy): Crystal chemistry and petrogenetic features;Balassone;Am. Miner.,2004

2. Raman spectra of synthetic and natural mullite;Bost;Vib. Spectrosc.,2016

3. Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources;Erdenetsogt;Int. J. Coal Geol.,2009

4. An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming;Foit;Am. Miner.,1987

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3