Heterogeneous Subcontinental Lithospheric Mantle below the South Margin of the Siberian Craton: Evidence from Composition of Paleoproterozoic Mafic Associations

Author:

Turkina O.M.12,Izokh A.E.12

Affiliation:

1. a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russia

Abstract

Abstract —Paleoproterozoic mafic associations of the Irkut block from the Sharyzhalgai uplift are gabbro-dolerite dikes and small gabbronorite and monzodiorite massifs, which formed at 1.87–1.84 Ga and were coeval with granitoids and basite intrusions of the South Siberian magmatic belt (SSB). All the Paleoproterozoic mafic associations of the Irkut block are characterized by the presence of biotite and alkali feldspar, enrichment in K2O, LILE, Th, and light REE, highly fractionated multielement spectra with sharp Nb and Ti depletion, and extremely low εNd(T) from –5.1 to –10.1. In these compositional features, they are similar to mafic complexes in the central and eastern parts of the SSB (the Baikal uplift and the western Aldan shield). Their geochemical and isotopic characteristics did not result from crustal contamination but point to derivation from the subcontinental lithospheric mantle (SCLM) enriched by reaction with felsic subduction-related and OIB-like mafic melts formed at a low degree of melting. The geochemically contrasting Paleoproterozoic gabbronorites in the Onot block of the Sharyzhalgai uplift are marked by depletion in K2O, Ba, LILE, Th, and light REE, weak depletion in Nb, and higher εNd(T) from –0.3 to –1.4. The gabbronorites indicate not only an increase in the contribution of a depleted source to their genesis but also the heterogeneity of the subcontinental lithospheric mantle below the south margin of the Siberian Craton. The formation of enriched SCLM domains throughout the South Siberian belt was mainly the result of Archean subduction-related metasomatic processes. The wide distribution of Paleoproterozoic mafic complexes with subduction geochemical signatures and negative εNd(T) on most early Precambrian cratons is due to global change in the composition and an increase in the heterogeneity of the subcontinental lithospheric mantle toward the end of the Archean.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3