Algorithm for Surface Wave Suppression on 2D Seismic Data Using the Slant Karhunen–Loeve Transform in a Time-Frequency Domain

Author:

Yablokov A.V.123,Moiseev M.V.1,Serdyukov A.S.123,Litvichenko D.A.4

Affiliation:

1. a Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russia

2. b Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

3. c N.A. Chinakal Institute of Mining, Siberian Branch of the Russian Academy of Sciences, Krasny pr. 54, Novosibirsk, 630091, Russia

4. d OOO Gazpromneft’ NTTs, ul. 50 Let Oktyabrya 14, Tyumen, 625048, Russia

Abstract

Abstract —Surface waves are the main source of coherent noise in land seismic survey, and their suppression is one of the main stages of common depth point data processing designed to improve the quality of tracking primary reflections on time sections. In practice, noise reduction is carried out using procedures from modern software based on numerical modeling of waveforms. However, they are too resource-intensive and have a large number of subjectively customizable parameters. The known algorithms have a common drawback: either the energy of reflected waves is distorted in an interference zone with a noise wave or the noise suppression quality is unsatisfactory. The current research is aimed at improving the filtering algorithm in a time-frequency domain using the slant Karhunen–Loeve transform in order to overcome these limitations, to increase the accuracy and rate of its software implementation, and also to test it when processing profile field data from land-based 2D seismic surveys. The algorithm is modified by developing a new method for determining static corrections for surface wave hodograph rectification in a time-frequency domain and by the application of preprocessing in which the reflected wave signal is removed preliminarily. These and other modifications ensure faster calculations and improve the quality of surface wave interference suppression. In addition, the slant Karhunen–Loeve transform is accelerated by parallelizing calculations across logical processor cores. In this paper, the algorithm is described in detail, its significant advantage over the standard methods of bandpass filtering and F–K filtering is shown, and the results of processing the field data obtained by the SWANA procedure (Geovation 2.0) and by the slant Karhunen–Loeve transform. The result obtained by the slant Karhunen–Loeve transform is superior to the SWANA procedure in terms of the surface wave filtering quality and has only four adjustable parameters (SWANA has 20 parameters)

Publisher

GeoScienceWorld

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3