Composition and Sources of Clastic Material of Terrigenous Rocks of the Khabarovsk Accretionary Complex (Sikhote-Alin)

Author:

Mednikov S.M.1,Kudymov A.V.2,Kruk N.N.1,Demonterova E.I.3,Didenko A.N.24,Oto S.5,Peskov A.Yu.2

Affiliation:

1. a V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. b Yu.A. Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch of the Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680000, Russia

3. c Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, ul. Lermontova 128, Irkutsk, Russia

4. d Geological Institute, Russian Academy of Sciences, per. Pyzhevskii 7, str. 1, Moscow, 119017, Russia

5. e University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan

Abstract

Abstract ––The results of comprehensive studies of terrigenous rocks of the Khabarovsk Sikhote-Alin accretionary complex are presented. It is established that the fragments of Jurassic and Permian–Triassic sandstones are dominated by poorly rounded and poorly separated material mainly from local provenance areas. The detrital part of the rocks is mainly represented by quartz, in a smaller amount by feldspar and rock fragments. Sandstones are characterized by high silica content, moderate alumina content, low concentrations of femic elements and calcium, moderate alkali content with significant variations in the K/Na ratio. Both Jurassic and Permian–Triassic rocks are typically characterized by reduced contents of LILE, REE, to a lesser extent HFSE and negative values of the ɛNd(T) parameter – compared to PAAS. The model Nd age of Jurassic sandstones varies from 1.36 to 1.71 Ga, Permian–Triassic – from 1.14 to 1.35 Ga. Most of the detrital zircon population is of late Paleozoic–early Mesozoic age, approximately 25% are older (pre-Paleoproterozoic). The studied sandstones are mainly rocks of the first cycle of weathering (petrogenic), formed during the erosion of igneous rocks of felsic composition. The synthesis of the obtained data suggests that the main source of the cluster material for the Mesozoic sedimentary rocks was the geological formations of the northern part of the Bureya–Khanka superterrane (Bureya and Malokhingan blocks), as well as, possibly, the eastern part of the Mongol–Okhotsk belt. The Khabarovsk terrane has not drifted significantly along the Tan Lu stike-slip system and is an “autochthonous” block in the present-day structure of Sikhote-Alin.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3