Mountain Growth under the Combined Effects of Paleostress and Paleoclimate: Implications from Apatite (U-Th)/He Thermochronology of Taibai Mountain, Central China

Author:

Zhang Weibin12ORCID,Wang Fei2ORCID,Wu Lin2ORCID,Shan Jingnan2,Yang Liekun2ORCID,Shi Wenbei2ORCID,Xu Xiwei3ORCID

Affiliation:

1. 1 State Key Laboratory of Earthquake Dynamics Institute of Geology China Earthquake Administration Beijing 100029 China cea.gov.cn

2. 2 State Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences Beijing 100029 China cas.cn

3. 3 National Institute of Natural Hazards MEMC Beijing 100085 China

Abstract

Abstract Tectonics and climate are the two competitive factors sculpturing landforms. Observations on the Earth surface are affected by signals from both tectonic and climatic agents. How to clarify these signals is a key issue. We categorize factors affecting mountain growth as horizontal (extension, compression, and transpression) and vertical (mantle upwelling and climate change) forces to evaluate the driving forces of accelerated exhumation in Taibai Mountain. Based on apatite (U-Th)/He thermochronology, we document two stages of accelerated exhumation at ca. 52-46 Ma and ca. 24-19 Ma from the age-elevation relationship, confirmed by 1D half-space modeling and QTQt inverse modeling. In the framework of paleostress, the two accelerated exhumation events occurred during transpressional periods in the early Eocene and late Oligocene-early Miocene in East China. These two events were triggered by the localized contractional deformation at the intersection of the North Qinling and Fengxian-Taibai faults: The opposite-direction shearing of these two faults was responsible for the former event with an unroofing magnitude of ~1 km; the same-direction shearing of the two faults resulted in the latter event with an unroofing magnitude of ~0.6 km. The far-field effects of both India-Eurasia collision and Pacific subduction drove the accelerated exhumation at ca. 52-46 Ma. The lateral extrusion of the Tibetan Plateau acted as the main driving force for the accelerated exhumation at ca. 24-19 Ma, which may have been slightly influenced by the intensified Asian summer monsoon in the early Miocene.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Institute of Geology, China Earthquake Administration

Publisher

GeoScienceWorld

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3