Energy Chaos Characteristic Evolution Analysis of Sandstones during Multilevel Unloading Subject to Different Confining Pressures

Author:

Dang Shuang12,Bi Jing12,Zhao Yu12ORCID,Wang Chaolin12,Xia Kaizong3,Gan Fei12

Affiliation:

1. 1 College of Civil Engineering Guizhou University Guiyang Guizhou 550025 China gzu.edu.cn

2. 2 Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety Guizhou 550025 China

3. 3 State Key Laboratory of Geomechanics and Geotechnical Engineering Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan Hubei 430071 China cas.cn

Abstract

Abstract In this study, multilevel and conventional unloading triaxial compression tests under different confining pressures are separately carried out to systematically reveal the deformation, energy evolution, and fracture characteristics of sandstone samples. Results show that under the multilevel unloading condition, the increase of the initial confining pressure has a more obvious inhibitory effect on the radial strain of sandstone, and the samples can fully exhibit elastic deformation and partial plastic deformation, showing obvious plastic characteristics. The radial energy growth factor is more sensitive than the axial energy growth factor during the process of confining pressure unloading, and the larger the initial confining pressure, the earlier the period-doubling bifurcation region and chaotic region are reached. To better understand the deformation and failure process of rock during engineering excavation, it is necessary to establish a constitutive relation describing the mechanical properties of rock. The three-step failure mode also proves that there are tensile and shear fractures in sandstone samples, in which the effects of tensile stress and shear stress are more or less interdependent in the failure process. It can be seen that multilevel unloading makes the energy conversion more adequate and reduces the sudden release of energy when the rock fails, reducing the possibility of rockburst and making the excavation unloading process safer. This will deepen the understanding of rock failure behavior and contribute to the better application of energy characteristics to relevant engineering practices.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Foundation

Guizhou University

Publisher

GeoScienceWorld

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3