Study on Mechanism of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam

Author:

Wang Songwei1ORCID,Cao Anye123ORCID,Wang Zhengyi4ORCID,Cao Jinrong1ORCID,Liu Yaoqi1ORCID,Xue Chengchun1ORCID,Guo Wenhao1ORCID

Affiliation:

1. School of Mines China University of Mining & Technology Xuzhou Jiangsu 221116 China cumt.edu.cn

2. Jiangsu Engineering Laboratory of Mine Earthquake Monitoring and Prevention Xuzhou China University of Mining & Technology Xuzhou Jiangsu 221116 China cumt.edu.cn

3. Xuzhou Wushuo Information Co. Ltd Xuzhou Jiangsu 221116 China

4. School of Civil Engineering & Architecture Changzhou Institute of Technology Changzhou Jiangsu 213032 China czu.cn

Abstract

Abstract With the increase of mining depth, rock burst disasters frequently occur in steeply inclined coal seams. Firstly, this paper analyzes the rock burst of 5521-20 working face in Yaojie No. 3 coal mine and summarizes the characteristics of rock burst in horizontal section mining of steeply inclined extra-thick coal seam (SIETCS). Then, the static load distribution characteristics and the influence of dynamic load in the horizontal section mining of SIETCS are systematically studied by combining theoretical analysis with numerical simulation. On this basis, the mechanism of rock burst in horizontal section mining of SIETCS is put forward, verified by actual measurement. The results show that the SIETCS is “clamped” under the combined action of the same change trend of roof and floor. The maximum principal stress peak values on the roof and floor sides reach 22.0 MPa and 20.5 MPa. The maximum shear stress earned 8.7 MPa and 8.4 MPa, which makes the shear stress concentration in the coal body high and tends to “shear dislocation.” Under this “shear-clamping” action, an approximate “trapezoidal” plastic zone and a “rectangular” stress concentration zone are formed under the section. With the increase of mining depth, the “shear-clamping” action of SIETCS becomes more and more intense. When the roof cantilever reaches the ultimate span and breaks, the intense dynamic load increases the shear stress and failure of coal, which is easy to induce rock burst. The superimposed load greatly affects the area from the roof side to the middle of the working face, and the rock burst is intense. The rock burst is weak on the floor side due to the pressure relief of the surrounding plastic zone. The monitoring results show that the supports pressure and MS events activity on the roof side and near the middle part of the working face is considerable, while the floor side is opposite, which verifies the research results.

Funder

Graduate Research and Practice Innovation Program of Jiangsu Province

Major Science and Technology Innovation Program of Shandong Province

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3