Tectonic Evolution of the Eastern Mediterranean Basin and its Significance for the Hydrocarbon Prospectivity of the Nile Delta Deepwater Area

Author:

Ahmed AbdelAal1,Ahmed El Barkooky1,Marc Gerrits1,Hans-Jürg Meyer1,Marcus Schwander1,Hala Zaki1

Affiliation:

1. Shell Egypt NV

Abstract

ABSTRACT The deepwater area of the Nile Delta is within the eastern Mediterranean basin on the Nile Delta Cone between the Herodotus abyssal plain to the west and the Levant basin to the east. The complex evolution and interaction of the African, Eurasian and Arabian plates have shaped the Late Miocene to Recent Nile Cone and its substratum. The tectono-stratigraphic framework is controlled by deep-seated basement structures with distinct gravity and magnetic expressions, and by the interaction of the NW-trending Misfaq-Bardawil (Temsah) and NE-trending Qattara-Eratosthenes (Rosetta) fault zones. In addition, significant salt-induced deformation of a Messinian evaporitic sequence up to 4,000 m thick has occurred, together with large-scale rotational block movement. The deformational pattern is largely the result of multiphase tectonic movements along pre-existing basement faults on the continental margin of the Neo-Tethys ocean. The Nile Cone consists of late Paleogene to Late Miocene sediments that pre-date the Messinian evaporites, and Pliocene-Pleistocene sequences. In the east, the pre-salt deposits (as much as 3,000 m thick) are primarily deepwater sediments with local condensed sequences over syndepositional intrabasinal highs. Shale occurs westward across the Rosetta trend. The Messinian evaporitic sequence exhibits three distinct seismic facies suggesting cyclic deposition with the occurrence of interbedded anhydrite, salt and clastic sequences and pure halite deposition. During the Messinian salinity crisis, large-scale canyons were excavated that resulted in multiphase cut-and-fill clastic systems. The Pliocene-Pleistocene sequences were deposited in a slope to basin-floor setting. Exploration targets are the Pliocene-Pleistocene deepwater channel and basin-floor turbidite sands in a variety of structural settings. Water depths range from 800 to 2,800 m. The Upper Miocene sequence offers additional exploration objectives in the form of fluvial and/or turbidite sands. The focus of pre-salt exploration is the delineation of distal turbidities within the Serravallian to Tortonian sequence and the identification of new reservoir sequences deposited on pre-existing intrabasinal highs. Hydrocarbon charge has yet to be proven by drilling, but seismic amplitude anomalies and the occurrence of natural surface slicks suggest both gas and liquid charges from pre-salt source rocks through faults and salt-withdrawal windows.

Publisher

GeoScienceWorld

Subject

Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3