Proposed correlation of Oman’s Abu Mahara Supergroup and Saudi Arabia’s Jibalah Group

Author:

Al-Husseini Moujahed I.

Abstract

ABSTRACT The Ediacaran–Cambrian Middle East Geologic Time Scale is extensively revised in the 2014 version (Enclosure). It suggests the top of the Abu Mahara Group glacial diamictites in Oman represent the termination of the late Cryogenian Marinoan Glaciation at 635 Ma. The overlying Ediacaran Nafun Group of Oman is shown between 635 and 547 Ma based on geochronologic data, and divided into: (1) the Lower Nafun Supersequence (635–582 Ma) consisting of the Hadash Formation (cap carbonate), the Masirah Bay Formation (clastics) and the Khufai Formation (carbonates); and (2) the Upper Nafun Supersequence (582–547 Ma) consisting of the Shuram Formation (clastics and carbonates) and the Buah Formation (carbonates). The Nafun Group lies below the Ediacaran– lower Cambrian Ara Group (evaporites and carbonates), which contains the Ediacaran/Cambrian Boundary currently dated at 541 Ma. The Sub-Shuram Unconformity, which corresponds to the global Shuram δ13C Negative Excursion, separates the Nafun supersequences. Its age was estimated by assuming the thicknesses of the Nafun formations are proportional to time in the Masirah-1 Well, where the Nafun Group attains its greatest-known thickness of 2,308 m in Oman. This assumption coincidently estimated the unconformity at 582 Ma, the same age as the Ediacaran Gaskiers (Varanger or Varingian) Glaciation. The new calibration was used to correlate the Nafun formations to the rock-time units of the Jibalah Group in several isolated basins along the Najd Fault System in the Arabian Shield, using recently published geochronologic data and δ13C measurements, as follows. The younger part of the Lower Nafun Supersequence (635–582 Ma) is here correlated to the Lower Jibalah Supersequence (605 ± 5 to 582 Ma), represented by the Umm al-Aisah Formation in the Jifn Basin, located along the Halaban-Zarghat Fault Zone of the Najd Fault System. The Umm al-Aisah Formation consists of volcanics and clastics that give way to the Umm al-Aisah Limestone. The Upper Nafun Supersequence (582–547 Ma) is here correlated to the Upper Jibalah Supersequence, which unconformably overlies the Umm al-Aisah Limestone, with its basal unit being the Gaskiers-coeval Jifn Polymictic Conglomerate (≥ 200 m thick). In the Bir Sija Basin, located along the Rika Fault Zone of the Najd Fault System, the likely Gaskiers-coeval polymictic conglomerate (150 m thick) is overlain by a 20 m-thick limestone unit, the Bir Sija Limestone, possibly a cap carbonate. The Upper Jibalah Supersequence continues with clastics overlain by the Muraykhah Formation (carbonates) or mixed clastics-carbonates of its equivalent formations. In several outcrops the Upper Jibalah Supersequence is overlain by the lower Cambrian Siq Sandstone Formation (≤ 525 ± 5 Ma) implying the Sub-Siq Unconformity represents a hiatus between 547 and 525 ± 5 Ma. The Jifn Formation in the Jifn Basin, however, may represent continuous deposition between 582 Ma and 525 ± 5 Ma.

Publisher

GeoScienceWorld

Subject

Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3