Pulsed Mesozoic Deformation in the Cordilleran Hinterland and Evolution of the Nevadaplano: Insights from the Pequop Mountains, NE Nevada

Author:

Zuza Andrew V.1ORCID,Thorman Charles H.2ORCID,Henry Christopher D.1ORCID,Levy Drew A.1ORCID,Dee Seth1,Long Sean P.3ORCID,Sandberg Charles A.2ORCID,Soignard Emmanuel4

Affiliation:

1. Nevada Bureau of Mines and Geology University of Nevada Reno NV 89523 USA unlv.edu

2. Emeritus Lakewood CO 80228 USA

3. School of the Environment Washington State University Pullman WA 642812 USA wsu.edu

4. Eyring Materials Center Arizona State University Tempe AZ 85287 USA asu.edu

Abstract

Abstract Mesozoic crustal shortening in the North American Cordillera’s hinterland was related to the construction of the Nevadaplano orogenic plateau. Petrologic and geochemical proxies in Cordilleran core complexes suggest substantial Late Cretaceous crustal thickening during plateau construction. In eastern Nevada, geobarometry from the Snake Range and Ruby Mountains-East Humboldt Range-Wood Hills-Pequop Mountains (REWP) core complexes suggests that the ~10–12 km thick Neoproterozoic-Triassic passive-margin sequence was buried to great depths (>30 km) during Mesozoic shortening and was later exhumed to the surface via high-magnitude Cenozoic extension. Deep regional burial is commonly reconciled with structural models involving cryptic thrust sheets, such as the hypothesized Windermere thrust in the REWP. We test the viability of deep thrust burial by examining the least-deformed part of the REWP in the Pequop Mountains. Observations include a compilation of new and published peak temperature estimates (n=60) spanning the Neoproterozoic-Triassic strata, documentation of critical field relationships that constrain deformation style and timing, and new 40Ar/39Ar ages. This evidence refutes models of deep regional thrust burial, including (1) recognition that most contractional structures in the Pequop Mountains formed in the Jurassic, not Cretaceous, and (2) peak temperature constraints and field relationships are inconsistent with deep burial. Jurassic deformation recorded here correlates with coeval structures spanning western Nevada to central Utah, which highlights that Middle-Late Jurassic shortening was significant in the Cordilleran hinterland. These observations challenge commonly held views for the Mesozoic-early Cenozoic evolution of the REWP and Cordilleran hinterland, including the timing of contractional strain, temporal evolution of plateau growth, and initial conditions for high-magnitude Cenozoic extension. The long-standing differences between peak-pressure estimates and field relationships in Nevadan core complexes may reflect tectonic overpressure.

Funder

National Science Foundation

USGS National Cooperative Geologic Mapping Program

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3