Metamorphic Temperatures and Pressures across the Eastern Franciscan: Implications for Underplating and Exhumation

Author:

Schmidt William L.1ORCID,Platt John P.1ORCID

Affiliation:

1. University of Southern California Earth Sciences Department 3651 Trousdale Pkwy Los Angeles CA 90089 USA usc.edu

Abstract

Abstract The Eastern Belt of the Franciscan Complex in the northern California Coast Ranges consists of coherent thrust sheets predominately made up of ocean floor sediments subducted in the Early Cretaceous and then accreted to the overriding plate at depths of 25-40 km. Progressive packet accretion resulted in the juxtaposition of a series of thrust sheets of differing metamorphic grades. This study utilizes laser Raman analysis of carbonaceous material to determine peak metamorphic temperatures across the Eastern Belt and phengite barometry to determine peak metamorphic pressures. Locating faults that separate packets in the field is difficult, but they can be accurately located based on differences in peak metamorphic temperature revealed by Raman analysis. The Taliaferro Metamorphic Complex in the west reached 323-336°C at a minimum pressure of ~11 kbar; the surrounding Yolla Bolly Unit 215–290°C; the Valentine Springs Unit 282-288°C at 7.8±0.7 kbar; the South Fork Mountain Schist 314–349°C at 8.6–9.5 kbar, a thin slice in the eastern portion of the SFMS, identified here for the first time, was metamorphosed at ~365°C and 9.7±0.7 kbar; and a slice attributed to the Galice Formation of the Western Klamath Mountains at 281±13°C. Temperatures in the Yolla Bolly Unit and Galice slice were too low for the application of phengite barometry. Microfossil fragments in the South Fork Mountain Schist are smaller and less abundant than in the underlying Valentine Springs Unit, providing an additional method of identifying the boundary between the two units. Faults that record a temperature difference across them were active after peak metamorphism while faults that do not were active prior to peak metamorphism, allowing for the location of packet bounding faults at the time of accretion. The South Fork Mountain Schist consists of two accreted packets with thicknesses of 300 m and 3.5 km. The existence of imbricate thrust faults both with and without differences in peak metamorphic temperature across them provides evidence for synconvergent exhumation.

Funder

National Science Foundation

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3