Analyzing and Filtering Surface-Wave Energy By Muting Shot Gathers

Author:

Ivanov Julian1,Park Choon B.1,Miller Richard D.1,Xia Jianghai1

Affiliation:

1. Kansas Geological Survey, The University of Kansas, 1930 Constant Ave., Lawrence, Kan. 66047

Abstract

Accurate estimation of the fundamental-mode dispersion curve is the most critical processing step of many shallow surface-wave methods. Use of multichannel analysis of surface waves (MASW), has proven very effective in separating different dispersive events that share the same seismic-frequency range. Yet, under certain circumstances, even when using such a data-redundant method, it may not be possible to separate the fundamental mode of the surface waves from higher modes. Dominant higher surface-wave modes, together with body- and guided waves, can impede the estimation of the fundamental mode. This is especially true when relatively short spread lengths are required for the survey for reasons such as higher lateral-resolution demands or presence of noise at the far offsets. A simple multichannel processing technique that mutes the interfering seismic waves in the shot records (offset-time [Formula: see text] domain) can be used to analyze and filter noisy surface-wave modes and thus significantly improve the range and resolution of multimodal dispersion curves in the phase-velocity-frequency domain. This is demonstrated on both synthetic and real shot gathers. One shortcoming of the muting method is the estimation of artificially high phase-velocity values at low frequencies. This artifact can be countered by employing dispersion-curve estimation in the same low-frequency range using the unmuted shot records. The proposed muting technique can be beneficial not only for the evaluation of the fundamental mode of the Rayleigh wave, but also for other types of dispersive seismic energy, such as higher Rayleigh-wave modes, Lamb, guided, and Love waves.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3