Characterization Method and Application of Heterogeneous Reservoir Based on Different Data Quantity

Author:

Ren Jie1ORCID,Wang Yuan2ORCID,Feng Di3ORCID,Gong Jiakun1

Affiliation:

1. College of Mechanics and Materials Hohai University Nanjing China hhu.edu.cn

2. College of Water Conservancy and Hydropower Engineering Hohai University Nanjing China hhu.edu.cn

3. College of Civil and Transportation Engineering Hohai University Nanjing China hhu.edu.cn

Abstract

Abstract Deep saline aquifers have strong heterogeneity under natural conditions, which affects the migration of carbon dioxide (CO2) injection into the reservoir. How to characterize the heterogeneity of rock mass is of great significance to research the CO2 migration law during CO2 storage. A method is proposed to construct different heterogeneous models from the point of view of whether the amount of data is sufficient or not, the wholly heterogeneous model with sufficient data, the deterministic multifacies heterogeneous model which is simplified by lithofacies classification, and the random multifacies heterogeneous model which is derived from known formation based on transfer probability theory are established, respectively. Numerical simulation is carried out to study the migration law of CO2 injected into the above three heterogeneous models. The results show that the migration of CO2 in heterogeneous deep saline aquifers shows a significant fingering flow phenomenon and reflect the physical process in CO2 storage; the migration law of CO2 in the deterministic multifacies heterogeneous model is similar to that in the wholly heterogeneous model and indicates that the numerical simulation of simplifying the wholly heterogeneous structure to the lithofacies classification structure is suitable for simulating the CO2 storage process. The random multifacies heterogeneous model based on the transfer probability theory accords with the development law of sedimentary formation and can be used to evaluate the CO2 migration law in unknown heterogeneous formations. On the other hand, by comparing the dry-out effect of CO2 in different heterogeneous models, it is pointed out that the multifacies characterization method will weaken the influence due to the local homogenization of the model in small-scale research; it is necessary to refine the grid and subdivide the lithofacies of the local key area elements to eliminate the research error. The research results provide feasible references and suggestions for the heterogeneous modeling of the missing data area and the simplification of large-scale heterogeneous models.

Funder

Jiangsu Planned Projects for Postdoctoral Research Funds

Publisher

GeoScienceWorld

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3