Prediction of Sandstone Dilatancy Point in Different Water Contents Using Infrared Radiation Characteristic: Experimental and Machine Learning Approaches

Author:

Ma Liqiang1ORCID,Khan Naseer Muhammad12ORCID,Cao Kewang3ORCID,Rehman Hafeezur2,Salman Saad4ORCID,Rehman Faheem Ur5

Affiliation:

1. Key Laboratory of Deep Coal Resource Mining (China University of Mining & Technology) Ministry of Education Xuzhou 221116 China meb.gov.tr

2. Department of Mining Engineering Balochistan University of Information Technology Engineering and Management Sciences Quetta Pakistan buitms.edu.pk

3. State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and Technology Xuzhou 221116 Jiangsu China cumt.edu.cn

4. National Centre of Artificial Intelligence Intelligent Information Processing Laboratory University of Engineering and Technology Peshawar 25000 Pakistan uet.edu.pk

5. Graduate School of Economics and Management Ural Federal University Mira 19 620002 Ekaterinburg Russia urfu.ru

Abstract

Abstract In rock mechanics, the dilatancy point is always occurring before rock failure during loading process. Water content plays a significant role in the rock physiomechanical properties, which also impact the rock dilatancy point under loading process. This dilatancy point significantly plays a warning role in the rock engineering structures stability. Therefore, it is essential to predict the rock dilatancy point under different water contents to get an early warning for effective monitoring of engineering projects. This study investigates the water contents effects on sandstone dilatancy point under loading in the presence of infrared radiation (IR). Furthermore, this IR was used for the first time as an input parameter for different artificial intelligence (AI) techniques to predict the dilatancy point in the stress-strain curve. The experimental findings show that the stress range in stress-strain curve stages (crack closure and unstable crack propagation) increases with water content. However, this range for deformation and stable crack propagation stages decreases with water content. The dilatancy stress, crack initiation stress, and elastic modulus are negatively linearly correlated, while peak stress and stress level are negatively quadraticaly correlated with a high (R2). The absolute strain energy rate, which gives a sudden increase at the point of dilatancy, is used as the dilatancy point index. The stress level is 0.86 σmax at the dilatancy point for dry rock and decreases with water content. This index is predicted from IR data using three computing techniques: artificial neural network (ANN), random forest regression (RFR), and k-nearest neighbor (KNN). The performance of all techniques was evaluated using R2 and root-means-square error (RMSE). The results of the predicted models show satisfactory performances for all, but KNN is remarkable. The research findings will be helpful and provide guidelines about underground engineering project stability evaluation in water environments.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3