First Evidence of the Detection of an Underground Nuclear Magnetic Resonance Signal in a Tunnel

Author:

Lin Tingting12,Yang Yujing1,Yi Xiaofeng12,Jiang Chuandong12,Fan Tiehu12

Affiliation:

1. College of Instrumentation and Electrical Engineering, Jilin University, China, 130061Email:

2. China Key Lab of Geo-Exploration Instrumentation of Ministry of Education, Jilin University, China, 130061Email:

Abstract

During the excavation of underground tunnels and ore mining, accidents related to sudden water inflows often occur. As the only technique used for the direct detection of groundwater, nuclear magnetic resonance (NMR) has advantages for the detection of disaster-inducing water flows. However, NMR has commonly been applied only at the ground surface using large-size loop with several turns (typically tens of meters). For the first time, we demonstrate that the water signal in a tunnel can be directly detected using an underground nuclear magnetic resonance (UNMR) experiment. Specifically, we describe the design of a six-meter multi-turn transmitting coil and receiving coil. By conducting UNMR measurements in the Dadushan Tunnel, located in southwestern China, we not only verified the ability to detect the UNMR signal, but also matched the observed data using a 1D inverse model. [Figure: see text]

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3