Covariation of Deep Antarctic Pacific Oxygenation and Atmospheric CO2 during the Last 770 kyr

Author:

Tang Zheng12ORCID,Li Tiegang12ORCID,Xiong Zhifang12ORCID,Dang Haowen3ORCID,Guo Jingteng12ORCID

Affiliation:

1. Key Laboratory of Marine Geology and Metallogeny First Institute of Oceanography Ministry of Natural Resources Qingdao 266061 China mnr.gov.cn

2. Laboratory for Marine Geology Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China qnlm.ac

3. State Key Laboratory of Marine Geology Tongji University Shanghai 200092 China tongji.edu.cn

Abstract

Abstract We present new geochemical evidence of changes in oxygenation of the deep Antarctic Pacific over the last 770 kyr. Our data are derived from redox-sensitive metals and export production proxies extracted from gravity core ANT34/A2-10 at 4217 m water depth. Our results show that oxygen levels in the deep Antarctic Zone (AZ) varied in line with the release of deeply sequestered remineralized carbon to the atmosphere during glacial–interglacial (G–IG) cycles, with lower oxygen concentrations and more carbon storage during glacial periods. Subsequent reductions in the amount of carbon stored at depth were closely associated with improved ventilation during glacial terminations. The systematic and repeated glacial-to-interglacial increases in export production in the AZ region indicate a robust pattern of enhanced Southern Ocean (SO) ventilation during interglacial periods. In addition to the decline in atmospheric CO2 caused by iron fertilization in the Subantarctic AZ (SAZ) during the latter half of the glacial progression, decreases in productivity in the central AZ suggest that the weakening of SO ventilation induced deep AZ carbon sequestration and that this might have made a continuous additional contribution to the CO2 decline from each interglacial peak to glacial maximum. Observed variations in the degree of deep oxygenation and “organic carbon pump” efficiency in the central AZ might be driven primarily by physical “ventilation” processes (i.e., overturning circulation, mixing, and/or air–sea gas exchange). Our records of abyssal oxygenation in the central AZ, which vary in concert with atmospheric CO2 levels over the last several G–IG cycles, provide strong evidence that SO ventilation plays a significant role in controlling variations in both the amount of respired carbon sequestered in the deep ocean and atmospheric CO2 concentrations on G–IG timescales. Specifically, we suggest that the “organic carbon pump” (OCP) in the SAZ and the physical ventilation processes in the AZ (the “carbon venting valve”) acted together synergistically, but dominated at different intervals over G–IG cycles, to repeatedly switch the SO between carbon sink and carbon source, thereby modulating the atmospheric CO2 over the last 770 kyr. These findings provide new insights into the role of the AZ in controlling deep SO carbon sequestration and atmospheric CO2 levels in G–IG cycles.

Funder

Taishan Scholars Project Funding

National Natural Science Foundation of China

Basic Scientific Fund for National Public Research Institutes of China

Impact and Response of Antarctic Seas to Climate Change

Publisher

GeoScienceWorld

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3