New analytical solution for the study of hydraulic interaction between Alpine tunnels and groundwater

Author:

Maréchal Jean-Christophe12,Perrochet Pierre3

Affiliation:

1. Laboratoire de Géologie (GEOLEP), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Suisse.

2. BRGM (Bureau de Recherches Géologiques et Minières), Service EAU, Unité RMD, 1039 rue de Pinville, F-34000 Montpellier, France – Adresse de correspondance : BRGM – NGRI Indo-French Centre for Groundwater Research, NGRI, Uppal Road, 500 007 Hyderabad, India, Tel : + 91 40 715 80 90, Fax : + 91 40 717 15 64, marechal@satyam.net.in

3. Centre d’Hydrogéologie, Université de Neuchâtel, 11 rue Emile Argand, CH-2007 Neuchâtel, Switzerland, Tel : + 41 32 718 25 77, Fax : + 41 32 718 26 03, pierre.perrochet@unine.ch

Abstract

Abstract The present paper addresses two major problems encountered during tunnel drilling and related to the hydraulic interaction with surrounding groundwater bodies. The first one is the prediction of water discharge into the tunnel, as a function of the geometric and hydrogeological data. The second problem is related to the assessment of the draining effects on surface waters (springs, lakes, wetlands). Surface monitoring campaigns are costly and evaluating their duration is a sensitive question. Both problems are tightly related and depend on aquifer dynamics. It is shown that in a geological context with steeply dipping structures, nearly vertical, inducing series of aquifers and aquicludes such as in the Alps, the drainage of the aquifer by the tunnel can be modelled by the analytical solution of Jacob and Lohman [1952] for artesian wells. First developed for horizontal, confined unsteady flow towards a vertical well with constant drawdown, it is adapted here to a horizontal tunnel by a rotation of π/2. The main difference between this solution and more classical Theis’ solutions is that a constant drawdown condition replaces the constant discharge rate condition. Hence, a relation is obtained for the time-dependent discharge rate Q(t) detected at the tunnel after drilling, as a function of aquifer transmissivity (T), storage coefficient (S), initial drawdown (so) and tunnel radius (ro). This analytical solution is compared to a finite-elements model simulating a draining tunnel in a simplified 2D vertical cross-section. The comparisons show that the decay of the tunnel discharge can be divided into two periods. During the first period, radial drawdown develops around the tunnel and there is excellent match between analytical and numerical results. Tunnel discharge results from the decompression of rock and water (storage effects) as a response to the sudden initial drawdown at the tunnel location. During the second period, the drawdown cone reaches the aquifer limits (lateral and upper) and numerical discharge rates decrease faster than analytical rates because of hydraulic heads decline at the aquifer limits. In the Alps, such trends were observed for the discharge rates into the Simplon and Mont-Blanc tunnels, and the analytical solution of Jacob and Lohman [1952] was applied to the first discharge period to evaluate aquifer transmissivity and storage coefficients. As indicated by the simulations, and corroborated by field observations, the analytical solution is only valid during a first period after tunnel opening, the duration of which scaling with the inverse of the aquifer diffusivity (T/S). In the second part of the paper, dimensionless type-curves are presented to enable rapid evaluation of the time where a given drawdown is observed at a given distance from the tunnel. Accounting for tunnel geometry (radius and depth) and aquifer parametres (T and S), these curves could for instance help in practice to determine when surface waters would start to be affected by a draining tunnel underneath. Although neglecting the boundary effects discussed in the first part of the paper, these type-curves demonstrate the great inertia of mountain aquifers, and could be used to adjust the duration of surface monitoring campaigns according to the specific tunnel/aquifer settings.

Publisher

EDP Sciences

Subject

Geology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3