Evidence of magmatic flow by 2-D image analysis of 3-D shape preferred orientation distributions

Author:

Launeau Patrick1

Affiliation:

1. UMR-CNRS 6112, Laboratoire de Planétologie et Géodynamique,Université de Nantes, rue de la Houssinière, 44322 Nantes. Patrick.Launeau@univ-nantes.fr

Abstract

Abstract The 3-D Shape Preferred Orientation (SPO) ellipsoid can be obtained by image analysis on a minimum of three perpendicular sections, when the 2-D measurements can be assimilated to ellipses. As numerous phenomenons can modify the SPO in magma (boundary condition effects, crystal interactions, joint migrations, etc.), the ellipsoid calculation is first tested on a set of digital models of simple shear flow. Those models, made of scattered shape ratio distribution, show that a suspension of crystals in a simple shear flow of the magma produces SPO parallel to the shear direction with an intensity given by the average shape ratio of the crystals, without any link with the amount of shear flow. This steady state SPO along the flow direction is particularly useful to study magma emplacement even if it is also shown that a critical shear rate γ between 4 and 8, for crystal shape ratio between 2 and 5 respectively, is sufficient to completely reorient a SPO. Therefore the SPO does not record magmatic strain as may do an enclave, which is an interface between two magmas with low viscosity contrast, that can record the whole strain of the magma by its passive deformation along the flow. An infinite strain is necessary here to parallelize the enclave on the shear flow direction. The application to a natural case (gabbronorite of the Bushveld, South Africa) shows that we must take care of the mineral chosen to describe a flow in a magma and that a careful classical study of the structures observed in thin sections is always required. To allow anyone to test the quality of the 2-D/3-D conversions, a web site is associated to this publication with a free access to all the image analysis and ellipsoid programs presented below.

Publisher

EDP Sciences

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3