Geothermal Accumulation Constrained by the Tectonic Transformation in the Gonghe Basin, Northeastern Tibetan Plateau

Author:

Tang Xianchun1ORCID,Liu Shasha1ORCID,Zhang Dailei1,Wang Guiling1,Luo Yinfei2,Hu Shengbiao3ORCID,Xu Qiang4ORCID

Affiliation:

1. Sinoprobe Center Chinese Academy of Geological Sciences Beijing China cags.ac.cn

2. Key Lab of Geo-Environment Qing Hai Province Xining China

3. Institute of Geology and Geophysics China Academy of Sciences Beijing China cas.cn

4. School of Geoscience and Technology Southwest Petroleum University Chengdu China swpu.edu.cn

Abstract

Abstract Advances in the exploration of the geothermal resources with remarkably high temperatures in the Gonghe Basin, northeastern Tibetan Plateau, provide an enhanced understanding of the origin and emplacement of hot dry rock (HDR). Based on the integrating analysis on the boundary faults distribution and their activity histories, springs and geothermal borehole data, and magnetotelluric data, we propose that the Gonghe Basin formed in a zone of slip dissipation between two major large-scale left-lateral strike-slip faults of the Kunlun fault to the south and the Haiyuan fault to the north during the Neogene time. During the evolution of these two major strike-slip faults, the basin has experienced two-phase developments: the transrotational Gonghe-Qinghai lacustrine basin system during the Miocene and the transpressional Gonghe-Tongde basin system during the Pliocene-Quaternary. In response to the crustal transtension components of the transrotational Gonghe Basin, the partial melting zone at depths of 10–25 km in the thickened crust (~54 km) has been uplifted by ~10 km compared with adjacent regions since the Pliocene. This uplifted partial melting zone may have provided prominent potential heat energy for the HDR in the Triassic granitoid batholith at shallower depths (~3–10 km) by effective enhancement of the geothermal conduction process via deep faulting. With obliquely south-verging thrusting of the Gonghe Nan Shan thrusts in the northern, the Gonghe Basin has transformed from transrotation to transpression-domination during the 6–3 Ma, as well as accompanying with the depocentre migrating to the northwest and in turn the basement elastically uplifting in the southeast. This differential deformation of the basin floor has resulted in a northeastward upward tilting of the Triassic batholith and an isothermal surface. It finally developed the high-temperature and shallow-burial HDR with anomalously temperatures of over 100°C at a depth of 1.5 km in the Qiabuqia and Zhacang geothermal areas in the Gonghe Basin, NE margin of the Tibetan Plateau.

Funder

Ministry of Natural Resources

Qinghai 906 Engineering Survey and Design Institute

Qinghai Provincial Department of Science and Technology Applied Basic Research Program

China Geology Survey

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

Reference75 articles.

1. Terrestrial heat flow of continental China: updated dataset and tectonic implications;Jiang;Tectonophysics,2019

2. The eastern Tibetan plateau geothermal belt, western China: geology, geophysics, genesis, and hydrothermal system;Tang;Tectonophysics,2017

3. Thermal history and hydrocarbon resource potential of Bohai Sea basin;Hu;China Offshore Oil and Gas,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3