Determining Ground Penetrating Radar Amplitude Thresholds for the Corrosion State of Reinforced Concrete Bridge Decks

Author:

Martino Nicole1,Maser Ken2,Birken Ralf1,Wang Ming1

Affiliation:

1. Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115

2. Infrasense, Inc., 14 Kensington Road, Arlington, MA 02476

Abstract

The most expensive part to maintain throughout the lifespan of a reinforced concrete bridge is the deck, largely because rehabilitation occurs after degradation is visible on a surface. However, the mechanisms that are the cause of deterioration, such as reinforcing bar corrosion, are initiated long before damage is detected via visual inspection. If rebar corrosion can be detected in its early stages, before severe deterioration has resulted, maintenance costs can be significantly reduced and the life cycle extended. Recent studies have shown that ground penetrating radar (GPR) rebar reflection amplitude attenuation correlates with active corrosion in reinforced concrete bridge decks. A significant advantage of GPR over other non-destructive evaluation (NDE) methods is its ability to be operated at highway speeds so that traffic is not disrupted. However, a well-defined GPR amplitude threshold allowing the operator to distinguish non-corroded from corroded areas of the deck has yet to be established. Because reinforcing steel corrosion is the most predominant cause of bridge deck deterioration, this research seeks to quantify the thresholds relating GPR signal amplitudes and rebar corrosion. One bridge deck removed from service, seventeen artificially corroded slabs, and one in-service bridge deck were analyzed using GPR and half-cell potential (HCP), which measures the amount of active corrosion and is currently considered the standard NDE method. A significant correlation between these two methods was found for each case. To systematically determine a threshold for the GPR so that deteriorated areas of the deck can be identified, receiver operating characteristic (ROC) curves were utilized. With an accuracy of over 87% for each scenario, this method clearly demonstrates the use of GPR for distinguishing corrosion in bridge decks.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference30 articles.

1. Bridge Deck Assessment Using Ground Penetrating Radar (GPR)

2. Arndt, R. Jalinoos, F. Cui, J. and Huston, D. 2010, Periodic NDE for bridge maintenance: in Proceedings: Structural Faults and Repair Conference.

3. ASTM Standard C876, 1999, Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM International:www.astm.org.

4. Ground-Penetrating Radar for Network-Level Concrete Deck Repair Management

5. Improved concrete bridge deck evaluation using GPR by accounting for signal depth–amplitude effects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3