A Critical Review of the Low-Frequency Electrical Properties of Ice Sheets and Glaciers

Author:

Kulessa Bernd1

Affiliation:

1. School of the Environment & Society, Swansea University, Swansea SA2 8PP, Wales, U.K.

Abstract

I review current understanding of the low-frequency electrical properties of glaciers and ice sheets, and identify future research directions that challenge near-surface geophysicists and glaciologists. In cold ice electrical conduction occurs principally via [a] movement of protonic point defects in the lattice in low-impurity ice; [b] networks of impurities at grain boundaries in ice of moderate impurity content; and [c] triple junctions and grain boundaries in ice of high impurity content. I infer that in temperate ice Archie-type conduction is likely dominant. Arrhenius and Looyenga type models, respectively, describe well the increase in bulk resistivity with decreasing ice temperature and density. The activation energy in cold ice and firn is constant at [Formula: see text] but poorly constrained in temperate ice and snow. The bulk resistivity of cold ice ranges from [Formula: see text] at [Formula: see text] at [Formula: see text], and is much higher in temperate ice (up to [Formula: see text]). The effects of impurity characteristics, temperature, and density on complex conductivity are poorly understood, although selected real conductivity components apparently increase with frequency, impurity concentration, or temperature. Future research should exploit more rigorously low-frequency electrical techniques in the field and laboratory, and develop or adapt from other areas of electrical geophysics novel mathematical and statistical concepts for joint data inversion and integration, for glaciological purposes such as ice core logging and investigations of glacier dynamics, ice fracturing, and glacier hydrology. I conclude that low-frequency electrical techniques have unduly been neglected in glaciology as compared with higher-frequency radar techniques over the past few decades, suggesting opportunities for concerted research efforts into these techniques.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3