Using Google Earth and Google Street View To Rate Rock Slope Hazards

Author:

Swanger William1,Admassu Yonathan1

Affiliation:

1. Department of Geology and Environmental Science, James Madison University, Harrisonburg, VA 22807

Abstract

AbstractRockfall hazard from cut slopes along highways are caused primarily by unfavorable orientations of discontinuities, presence of unconsolidated cobble/boulder deposits, undercutting of strong rocks by weaker rocks, or degradation of weak rock masses. The rockfall hazard rating system (RHRS) was introduced in Oregon to evaluate the hazard and associated risk to an adjacent transportation facility for a cut slope's potential for releasing rockfalls. RHRS is a numerical score–based rating of parameters that characterize rockfalls. The parameters include slope geometry (height, angle, roughness, orientation), geologic information (discontinuity characterization, undercutting susceptibility), driver's line of sight, and climate. Geologic information, such as discontinuity orientation data, is traditionally collected using a transit compass and measuring tape at the site. The method is time consuming and expensive and can be dangerous. This study tests the use of Google Earth and Google Street View tools to remotely collect data for selected parameters that characterize rockfall hazard. The selected parameters are categorized under slope profile, geologic characteristics, and impact factor parameters, which are quantitatively and qualitatively measurable using Google Street View and Google Earth. A section of U.S. 33 with a high density of road cuts and two more sites along Interstate 64, all located in Virginia, were selected for the study. Sites were evaluated by using a combination of measurement tools available in Google Earth and a visual inspection of the rock units in Google Street View. The results of seven of the sites were re-evaluated using field-derived data.

Publisher

GeoScienceWorld

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3