Affiliation:
1. China University of Petroleum Qingdao Shandong China cup.edu.cn
Abstract
Abstract
Hydrocarbon reservoirs often contain partially gas-saturated rocks that have attracted the attention of exploration geophysicists and geologists for many years. Wave-induced fluid flow (WIFF) is an effective mechanism to quantify seismic wave dispersion and attenuation in partially gas-saturated rocks. In this study, we focus on the local fluid flow induced by variations in fluids in different regions and present a new model that describes seismic wave propagation in partially gas-saturated rocks, namely, the cylindrical patchy-saturation model. Because the seismic wave velocity and attenuation oscillate at high frequencies, it is not ideal for studying dispersion and attenuation caused by WIFF. To avoid the high-frequency oscillation in the cylindrical patchy-saturated model, we use an approximation to the Newman function instead of the full Newman function to calculate the effective bulk modulus. We then calculate the P-wave velocity and attenuation of the proposed model and interpret the lab-measured data. The proposed model is an alternative patchy-saturation model that can explain the problem of high-frequency oscillation and low-frequency attenuation.
Funder
Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong province and Ministry of Science and Technology of China
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献