Kuvaevite, Ir5Ni10S16, a New Mineral Species, Its Associations and Genetic Features, from the Sisim River Placer Zone, Eastern Sayans

Author:

Barkov A.Y.1,Tolstykh N.D.2,Martin R.F.3,Tamura N.4,Ma Chi5,Nikiforov A.A.1

Affiliation:

1. a Cherepovets State University, pr. Lunacharskogo 5, Cherepovets, 162600, Russia

2. b V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

3. c Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 0E8, Canada

4. d Advanced Light Source, 1 Cyclotron Road, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229, USA

5. e Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Blvd., Caltech, 170-25 Pasadena, CA 91125, USA

Abstract

Abstract —Kuvaevite, ((Ir,Rh)5(Ni,Fe,Cu)10S16), forms small grains (up to 20 µm across) in globular inclusions hosted by grains of Os–Ir–(Ru) alloys (up to 0.5 mm) in ore occurrences along the Ko River in the Sisim placer zone, Eastern Sayans. Rh-bearing pentlandite or oberthürite (or both), the minerals of the laurite-erlichmanite series and Pt–(Pd)–Fe alloys are the main associated minerals. Kuvaevite is gray to brownish gray in color in reflected light. Its bireflectance is weak to absent. It is slightly pleochroic in gray to light brown shades, and slightly anisotropic, from gray to light yellow shades. Its calculated density is 6.37 g/cm3. According to results of microprobe analyses (n = 3) carried out using wavelength-dispersive spectrometry, WDS, the composition of kuvaevite is: Cu 5.94 (4.39–6.89), Ni 13.95 (13.80–14.24), Fe 10.95 (10.18–11.97), Co 0.07 (0.06–0.10), Ir 32.38 (32.19–32.73), Rh 7.27 (7.22–7.31), Pt 1.91 (1.67–2.06), Os 0.05 (0–0.09), Ru 0.05 (0.04–0.05), S 27.06 (26.77–27.41), total 99.63 wt.%. The empirical formulae calculated using the mean results of analyses are: (Ir3.22Rh1.35Pt0.19Ru0.01Os0.01)Σ4.78(Ni4.54Fe3.75Cu1.79Co0.02)Σ10.10S16.13 (WDS) and (Ir3.23Rh1.43Pt0.25)Σ4.91(Ni4.49Fe3.57Cu1.86Co0.06)Σ9.98S16.11 (SEM/EDS; n = 56). These are based on a total of 31 atoms according to structural data obtained for torryweiserite, the rhodium-dominant analogue. Kuvaevite forms solid-solution series with torryweiserite, tamuraite and ferrotorryweiserite, all these being isostructural. The symmetry of kuvaevite was determined using the synchrotron Laue microdiffraction; the results are in good agreement with the trigonal crystal system and give the following unit-cell parameters: a = 7.079(5) Å, c = 34.344(12) Å, V = 1490(2) Å3; Z = 3. The ratio c/a is 4.852. The probable space-group, R3m (#166), is based on structural results for torryweiserite. The strongest eight reflections in the X-ray diffraction pattern derived from the microdiffraction study [d in Å(hkl) (I)], are the following: 3.0530(201)(43), 3.0103(216)(100), 2.9962(1010)(53), 2.7991(205)(50), 2.4946(208)(31), 1.9208(3110)(41), 1.7697(410)(73), 1.7582(2016)(66). The results of the electron backscatter diffraction study (EBSD) of two kuvaevite crystals are well–indexed based on the R3m space group. Kuvaevite and related sulfides significantly vary in composition in the Ko River placer, in the entire Sisim zone, and in some other ore occurrences worldwide. Associations of platinum-group minerals observed in ore occurrences at Ko River and in the Sisim zone seem to be genetically related to bedrock zones of chromite-bearing ultramafic rocks (serpentinites) of the Lysanskiy complex. Kuvaevite and other minerals present in the polymineralic inclusions, hosted by Os–Ir–(Ru) alloys, formed from droplets of residual melt. This melt accumulated the “incompatible” elements, which could not be incorporated into the structure of the host alloy, including lithophile elements, chalcogens (S, Te), semimetals (As, Sb, Bi), base metals (Fe, Ni, Cu), as well as relatively low-temperature PGE species (Pt, Pd) and Rh. There are local data on metastable crystallization and undercooling of the silicate melt, as well as effective differentiation and fractionation of S and ore components during the crystallization of these inclusions. Kuvaevite is named after O.M. Kuvaev (1934–1975), a prominent geologist, geophysicist and writer.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3