An Integrated Approach of Numerical Well Test for Well Intersecting Fractures Based on FMI Image

Author:

Jin Guodong12ORCID,Xing Huilin123ORCID,Li Tianbin4,Zhang Rongxin12,Liu Junbiao12,Guo Zhiwei12,Ma Zihan12

Affiliation:

1. Frontiers Science Center for Deep Ocean Multispheres and Earth System Key Lab of Submarine Geosciences and Prospecting Techniques MOE and College of Marine Geosciences Ocean University of China Qingdao 266100 China ouc.edu.cn

2. International Center for Submarine Geosciences and Geoengineering Computing (iGeoComp) Ocean University of China Qingdao 266100 China ouc.edu.cn

3. Laboratory for Marine Mineral Resources Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China qnlm.ac

4. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Chengdu University of Technology Chengdu 610059 China cdut.edu.cn

Abstract

Abstract Fluid flow is strongly affected by fractures in unconventional reservoirs. It is essential to deeply understand the flow characteristics with fractures for improving the production and efficiency of unconventional reservoir exploitation. The purpose of this work is to develop an accurate numerical model to evaluate the transient-pressure response for well intersecting fractures. The meshes generated from Fullbore Formation Micro-Imager (FMI) images ensure an efficient numerical description of the geometries for fractures and interlayers. The numerical simulation is implemented by an inhouse finite element method-based code and benchmarked with drill stem test (DST) data. The results show that three flow regimes appear in the reservoir with fractures within the test period: wellbore afterflow, pseudolinear flow, and radial flow. In contrast, only the wellbore afterflow and radial flow appear for the wells without fractures. The results also reveal that fractures dominate the flow near the wellbore. Verification and application of the model show the practicability of the integrated approach for investigating the transient-pressure behaviors in the unconventional reservoir.

Funder

Ministry of Education of the People's Republic of China

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3