Revised Maximum Depositional Age for the Ediacaran Browns Hole Formation: Implications for Western Laurentia Neoproterozoic Stratigraphy

Author:

Provow Ashley W.12,Newell Dennis L.2ORCID,Dehler Carol M.2,Ault Alexis K.2,Yonkee W. Adolph3,Thomson Stuart N.4ORCID,Mahan Kevin H.5

Affiliation:

1. Department of Geosciences University of Nevada-Las Vegas Las Vegas NV 89154 USA unlv.edu

2. Department of Geosciences Utah State University Logan UT 84322 USA usu.edu

3. Department of Earth and Environmental Sciences Weber State University Ogden UT 84408 USA weber.edu

4. Department of Geosciences University of Arizona Tucson AZ 85721 USA arizona.edu

5. Department of Geological Sciences University of Colorado Boulder Boulder CO 80309 USA colorado.edu

Abstract

Abstract Constraining the depositional age of Neoproterozoic stratigraphy in the North American Cordilleran margin informs global connections of major climatic and tectonic events in deep time. Making these correlations is challenging due to a paucity of existing geochronological data and adequate material for absolute age control in key stratigraphic sequences. The late Ediacaran Browns Hole Formation in the Brigham Group of northern Utah, USA, provides a key chronological benchmark on Neoproterozoic stratigraphy. This unit locally comprises <140 m of volcaniclastic rocks with interbedded mafic-volcanic flows that lie within a 3500 m thick package of strata preserving the Cryogenian, Ediacaran, and the lowermost Cambrian history of this area. Prior efforts to constrain the age of the Browns Hole Formation yielded uncertain and conflicting results. Here, we report new laser-ablation-inductively-coupled-mass-spectrometry U-Pb geochronologic data from detrital apatite grains to refine the maximum depositional age of the volcanic member of the Browns Hole Formation to 613±12 Ma (2σ). Apatite crystals are euhedral and pristine and define a single date population, indicating they are likely proximally sourced. These data place new constraints on the timing and tempo of deposition of underlying and overlying units. Owing to unresolved interpretations for the age of underlying Cryogenian stratigraphy, our new date brackets two potential Brigham Group accumulation rate scenarios for ~1400 m of preserved strata: ~38 mm/kyr over ~37 Myr or ~64 mm/kyr over ~22 Myr. These results suggest that the origins of regional unconformities at the base of the Inkom Formation, previously attributed to either the Marinoan or Gaskiers global glaciation events, should be revisited. Our paired sedimentological and geochronology data inform the timing of rift-related magmatism and sedimentation near the western margin of Laurentia.

Funder

Utah State University

Rocky Mountain Association of Geologists

Tobacco Root Geological Survey

Geological Society of America

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3