Influence of Microcracks on Stress Sensitivity in Tight Sandstone

Author:

Wu Zhenkai12ORCID,Zhang Jie12ORCID,Li Xizhe123ORCID,Xiao Hanmin123ORCID,Liu Xuewei23,Rao Yuan12,Li Yang3,Luo Yongcheng12,Ma Longfei12

Affiliation:

1. College of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China ucas.ac.cn

2. Institute of Porous Flow and Fluid Mechanics University of Chinese Academy of Sciences Langfang 065007 China ucas.ac.cn

3. Research Institute of Petroleum Exploration & Development Beijing 100083 China cnpc.com.cn

Abstract

Abstract Stress sensitivity occurs throughout the reservoir development process, especially in the study of low permeability tight reservoir, considering the influence of stress sensitivity is particularly important. When studying stress sensitivity, the current main experimental methods are variable confining pressure and variable fluid pressure methods, but they cannot simulate the stress sensitivity during water injection development. Therefore, in this paper, an experimental stress sensitivity method that can be used to study the depletion mining and water injection development processes is established. In addition, the influence of different degrees of microcrack development on the stress sensitivity of the reservoir is investigated. The results of this study show that under the experimental conditions described in this article, the loading of axial compression plays a role of preloading stress and realizes the whole process of stress sensitivity under the condition that the fluid pressure is lower than the confining pressure. In the experiment, the permeability growth rate of matrix cores does not exceed 20%. For cores containing microcracks, when the axial pressure was less than 30 MPa, the permeability slowly increased with increasing fluid pressure. When the axial pressure was 30 MPa, the permeability changes are mainly divided into two stages. In the first stage, the microcracks are closed under compressive stress. At this time, the microcracks have a limited impact on the seepage capacity. The permeability increases slowly with increasing fluid pressure. In the second stage, the permeability rapidly increases after the microcracks open. These two stages can be described by two straight lines. The slope of the first line has nothing to do with the development of microcracks; the higher the degree of microcrack development, the greater the slope of the straight line of the second stage. For all of the cores, the permeability decreases as the axial pressure increases.

Funder

CNPC basic advanced reserve technology

Publisher

GeoScienceWorld

Subject

Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3