Development of fluid pathways and associated diagenetic variations in a natural CO2 leaking fault zone.

Author:

Petrie Elizabeth S.1ORCID,Skurtveit Elin23,Faleide Thea Sveva2,Halvorsen Kristine2,Smith Scott A.,Arvesen Brock C.4

Affiliation:

1. Natural and Environmental Sciences, Western Colorado University 1 , Gunnison, CO , USA

2. Norwegian Geotechnical Institute (NGI) 2 , Oslo , Norway

3. Department of Geoscience, University of Oslo 3 , Oslo , Norway

4. Haley and Aldrich 4 , Seattle, WA , USA

Abstract

Abstract Permeability within fault zones can vary through time due to repeated deformation events and rock–fluid interactions. Understanding the history of fault zone alteration is critical when building hydrogeologic models and evaluating the risk of mechanical rock failure during subsurface storage. Newly acquired drill core recovered within the fault damage zone and fault core of the Little Grand Wash fault (LGWF) is combined with observations from outcrop, optical petrography, computerized tomography image analysis, and ultrasonic velocity measurements to characterize the rock types and preserved structural deformation features within this fault zone. These data are used to understand the history of mechanical rock failure and mineralization associated with this fluid-charged fault system. We identify multiple structural features and use their cross-cutting relationships to understand the history of deformation and their association with changes in fault zone permeability and rock mechanical properties. At the LGWF zone, structural deformation features vary temporally and are used to recognize a decoupling between fault slip and fluid flow. The formation of most open-mode veins occurred after shear failure within the LGWF zone. Early-developed shear bands are cut by carbonate veins, that are in turn cut by shear fractures, followed by a second phase of vein formation and ultimately by folding in the fault core. This sequence of formation reflects changes in mechanical rock properties due to subsurface rock–fluid interactions and indicates that the alteration of rock matrix by secondary carbonate cement results in increased unconfined compressive strength, decreased permeability, and increased ultrasonic velocity. In this fault zone, and possibly other fault zones, the changes in rock properties associated with deformation can be detected through their geophysical response.

Publisher

GeoScienceWorld

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3