Cenozoic Exhumation Across the High Plains of Southeastern Colorado from (U-Th)/He Thermochronology

Author:

Kainz Sabrina J.1ORCID,Abbott Lon D.1,Flowers Rebecca M.1,Olsson Aidan2,Fernandez Skye13,Metcalf James R.1

Affiliation:

1. Department of Geological Sciences, University of Colorado Boulder 1 , Boulder, CO, 80309 , USA

2. Fairview High School 2 , Boulder, CO, 80305 , USA

3. Research Experiences in Solid Earth Science for Students (RESESS) 3 , Boulder, CO, 80301 , USA

Abstract

Abstract Colorado’s High Plains stand at anomalously high elevations (~1300–2100 m) for their continental interior setting, but when and why this region became elevated is poorly understood. The Cenozoic history of the High Plains is also likely linked with that of the Rocky Mountains, where the timing and cause(s) of uplift are similarly debated. We present apatite (U-Th)/He (AHe) data for 10 samples from Tertiary intrusives along a ~200 km west-to-east transect across the High Plains of southeastern Colorado to constrain the timing of exhumation and to gain insight into when and why regional elevation gain occurred. Mean sample AHe dates for the ~24–22 Ma East Spanish Peak pluton and associated radial dikes from the westernmost High Plains are 18.8 ± 1.4 to 14.1 ± 1.7 Ma, recording substantial postemplacement erosion. AHe results for the mafic to ultramafic Apishapa Dikes (oldest ~37 Ma, youngest ~14 Ma) located ~20–40 km farther north and east on the High Plains range from 12.0 ± 1.4 to 6.2 ± 1.9 Ma, documenting continued exhumation on the western High Plains during the ~12–5 Ma deposition of the Ogallala Formation farther east and suggesting that the western limit of Ogallala deposition was east of the Apishapa Dikes. In far southeastern Colorado, the Two Buttes lamprophyre was emplaced at 36.8 ± 0.4 Ma and yields a Late Oligocene AHe date of 27.1 ± 4 Ma. Here, the Ogallala Formation unconformably overlies Two Buttes, indicating that the regional ~12 Ma age for the base of the Ogallala is a minimum age for the exposure of the pluton at the surface. The AHe data presented here document that kilometer-scale erosion affected all of the southeastern Colorado High Plains in Oligo-Miocene time. While exhumation can have multiple possible causes, we favor contemporaneous surface uplift capable of elevating the region to modern heights.

Publisher

GeoScienceWorld

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3