Groundwater Response to Tide Fluctuation and Rainfall in Coastal Reclamation Area

Author:

Meng Xue1ORCID,Wang Jinguo1ORCID,Yang Yun1ORCID,Yang Lei2ORCID

Affiliation:

1. 1 School of Earth Sciences and Engineering Hohai University Nanjing 211100 China hhu.edu.cn

2. 2 Zhejiang Institute of Hydrogeology and Engineering Geology Ningbo 315012 China

Abstract

Abstract Land reclamation not only provides valuable space for urban development, but also creates an upper aquifer in fill materials. Analysis of groundwater level (GWL) fluctuations in coastal aquifer formed due to land reclamation can provide important insight into the groundwater system (GWS) evolution, including the connectivity between the GWL and influencing variables (ocean tide and rainfall). This study presents wavelet analysis, multichannel SSA-wavelet analysis (MSSA-WA), and lag correlations to analyze the response of GWL to ocean tide and rainfall in the reclamation area of Zhoushan Island, China. The MSSA-WA results and the lag correlations show that the MSSA-WA provides better analysis results, specifically, clay layer and rainfall filtered information. The influence of the influencing variables on the upper GWL is relatively greater than the clay layer, and rainfall has a relatively stronger impact on GWLs than tides. The GWLs of the upper layer, SW18 and SW21, which are heavily influenced by influencing variables, can be predicted through variations in influencing variables. Finally, the analysis of the results shows that the lithology of different aquifers, offshore distance, preferential flow path, and pressure load can be factors between tides and GWLs. For rainfall and GWLs, different lithology of aquifers, properties of vadose zone, and topography can be influential factors. The combination method provides an optimization method for GWL fluctuations in coastal reclamation area with combined MSSA and wavelet analysis for correlation analysis between GWL and influencing variables (ocean tide and rainfall) and analysis of corresponding causes and influencing factors.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3