Characteristics of In Situ Desorption Gas and their Relations to Shale Components: A Case Study of the Wufeng-Longmaxi Shales in Eastern Sichuan Basin, China

Author:

Cao Taotao12ORCID,Deng Mo2,Pan Anyang2,Wang Qingtao3,Cao Qinggu2,Liu Hu45,Juanyi Xiao1

Affiliation:

1. 1 School of Earth Sciences and Spatial Information Engineering Hunan University of Science and Technology Xiangtan Hunan 411201 China hnust.edu.cn

2. 2 Wuxi Research Institute of Petroleum Geology Petroleum Exploration and Production Research Institute SINOPEC Wuxi Jiangsu 214126 China sinopecgroup.com

3. 3 Guangzhou Institute of Energy Testing Guangzhou 511447 China

4. 4 Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province Chengdu 600091 China

5. 5 Technology Innovation Center of Shale Gas Exploration and Development in Complex Structural Areas MNR Chengdu 600091 China mnr.gov.cn

Abstract

AbstractIn situ desorption gas measurement can be used to evaluate shale gas potential, sweet spot prediction, and production strategy optimization. However, gas contents and carbon isotope compositions of in situ desorption gas and the relationship to reservoir properties and shale compositions are not systematically studied from the actual production situation. In this study, 63 core shales of Wufeng-Longmaxi formation from the YY1 well in the eastern Sichuan Basin were subjected to TOC (total organic carbon), solid bitumen reflectance (Rb), maceral fractions of kerogen analysis, and X-ray diffraction (XRD) analysis to obtain shale compositions, and 10 selected samples were conducted on low-pressure N2/CO2 (N2/CO2GA), mercury injection capillary pressure (MICP), and field emission scanning electron microscopy (FE-SEM) tests to acquire reservoir properties. Meanwhile, 60 samples were also subjected to in situ desorption tests to obtain shale gas content, and 5 selected samples were used to investigate variations in shale gas compositions and carbon isotopes during the desorption process. Results indicated that transient rates of shale gas during desorption process are significantly controlled by desorption time and temperature. In terms of in situ desorption process, total gas is divided into desorbed gas and lost gas. Desorbed gas is mainly comprised of CH4, N2, CO2, and C2H6, with desorption priorities of N2 > CH4 > CO2 ≈ C2H6, which are consistent with their adsorption capacities. The δ13CH4 values tend to become heavier during desorption process, varying from -37.7‰ to -16.5‰, with a maximum increase amplitude of 18.8‰, whereas the change of δ13C2H6 value, from -38.2‰ to -34.8‰, is minor. Desorbed gas shows carbon isotope reversals, due to that preferential desorption of 12C-CH4 during desorption process results in δ13C value less negative in CH4. The tested desorbed gas, lost gas, and total gas ranged 0.088 to 1.63 cm3/g, 0.15 to 3.64 cm3/g, and 0.23 to 5.20 cm3/g, respectively. Shale gas content, i.e., desorbed gas and lost gas, is controlled primarily by TOC content and organic matter (OM)-hosted nanometer-size pores. Clay mineral content is negatively correlated with shale gas content, due to that, clay mineral pores are more easily compacted during burial and occupied by water molecules. Compared with shale gas reservoirs in North America, the studied shale reservoir has high brittle mineral content and permeability, which is considered to have great potential of shale gas resource and to be the next commercial development zone in south China.

Funder

Education Department of Hunan Province

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3