GPR Profiles of Glacial Till and its Transition to Bedrock: Interpretation of Water Content, Depth and Signal Loss from Diffractions

Author:

Arcone Steven1,Campbell Seth2,Pfeffer W. Tad3

Affiliation:

1. Engineer Research and Development Center (ERDC), U.S. Army Cold Regions Research and Engineering Laboratory (CRREL), 72 Lyme Road, Hanover, New Hampshire, 03755 U.S.A.

2. Climate Change Institute, University of Maine, Orono, Maine, 04469 U.S.A.

3. Institute of Arctic and Alpine Research, Campus Box 450, Boulder, CO 80309-0450 Dept. Civil, Environmental and Architectural Engineering, ECOT 441, UCB 428, University of Colorado, Boulder, CO, 80309-0428 U.S.A.

Abstract

We discuss GPR reflection profiles that we recorded on glacial till and a colluvial diamict at several locations in New Hampshire, and from which we interpret water contents, depths and rates of signal loss. We used pulses centered from 150–200 MHz and 300–360 MHz. The boulder-rich sediments reside over granitic and metavolcanics, the horizons of which we recognize from the relative strengths and phase of their waveforms, underlying fractures, and well-developed diffraction asymptotes. The till produced an apparent dense distribution of diffractions with limited asymptotes and dispersion, and occasional minor stratification. We use these diffractions and moveout profiles to calculate relative dielectric permittivities between 17 and 27, values which suggest up to 30% volumetric water, and likely saturation within these over-consolidated sediments. The evidence for transitions from till to bedrock ranges from a simple horizon to complex horizon segments, all characterized by diffractions and amenable to single-layer migration. A gradational loss in diffraction strength with depth suggests gradational weathering or changes in grain size as the cause. Maximum profiled depths range from 4 m to at least 10 m, with estimated scattering attenuation rates of about 3.3 dB m−1. In contrast, one and possible two colluvial diamicts, which likely contained 3-m-size boulders, show short segments of stratification, rare diffraction asymptotes, allow more than 20-m penetration and provide scattering losses of about 0.5 dB m−1. We measured extremely low conductivity and calculated permittivities ranging from 9–12, which suggest high densities and volumetric water content of 4–12%. Low, single scattering loss and deep penetration in the till are consistent with evidence of ground waves traveling up to 40 m one way. The phase polarity of waveforms within till and colluvial events show they may originate from either high or low dielectric contrasts, likely related to water or large boulders, respectively.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3