Modification and Application of Limestone HJC Constitutive Model under the Impact Load

Author:

Tian Xingchao1ORCID,Tao Tiejun1ORCID,Lou Qianxing1ORCID,Xie Caijin1ORCID

Affiliation:

1. College of Civil Engineering Guizhou University Guiyang 550025 China gzu.edu.cn

Abstract

Abstract When the Holmquist-Johnson-Cook (HJC) constitutive model is used to simulate limestone under the impact load, problems of a compaction stage not being characterised and low dynamic peak stress prediction accuracy are observed. The numerical simulation and experimental results were inconsistent. In this study, we proposed a modified HJC constitutive model and parameter determination method. Based on the characteristics of the dynamic stress-strain curve of limestone and relationship between axial and volumetric strains, the linear elastic phase of the state equation of the original HJC constitutive model was modified, and a new state equation was proposed. The yield surface of the original HJC constitutive model was modified on the basis of the sensitivity analysis method and limit surface theory, and a method for determining the parameters of the modified HJC constitutive model of limestone was proposed. The modified model and parameter determination method were experimentally verified using the split Hopkinson pressure bar (SHPB) and a high-speed camera. The results showed that the state equation curve of limestone under the impact load was divided into compaction, linear elastic, and fully compacted stages. After the introduction of the pressure parameters M, P, and Q, the nonlinear change in the stress-strain curve during the compaction stage was highly consistent with the SHPB results. The strength parameters fc, A, B, and N exhibited the maximum impact on the dynamic strength of limestone. After the strength parameters A, B, and N were modified for the yield surface, the prediction accuracy of limestone dynamic peak stress was over 97%, the prediction error rate decreased by more than 10%, and the reliability of numerical simulation results improved. These results can provide a simple and feasible numerical simulation method for the dynamic analysis of rock materials.

Funder

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

Reference34 articles.

1. Numerical simulation study of impact rock breaking by post-mixed abrasive water jet based on SPH-FEM coupling algorithm;Mi;Vibration and Shock,2021

2. Numerical simulation of the deformation-cracking process of the surrounding rock of a rectangular roadway under different impact speeds;Wang;Vibration and Shock,2020

3. Study on parameters of Holmquist Johnson Cook constitutive model of granite porphyry;Wen;Journal of computational mechanics,2016

4. Parameter determination of Holmquist-Johnson-Cook model for sandstone;Ling;Acta China Coal Society,2018

5. Research on impact damage characteristics of coal and rock based on HJC model;Liu;Engineering Blasting,2021

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3