Evaluation and Current Results of the Seismic Acoustic Impact Monitoring Assessment (SAIMA) System

Author:

Hutchenson Kevin D1,Conner Ray B1,Johnson Lars B1,Bennett Hollis H2,Simms Janet E2,Yule Don E2

Affiliation:

1. Quantum Technology Sciences, 1980 N. Atlantic Ave., Suite 201, Cocoa Beach, FL 32931

2. U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180

Abstract

For the past several years, Quantum Technology Sciences (QTSI) and U.S. Army Engineering Research and Development Center (ERDC) have been developing a system to actively sustain present and future artillery ranges at zero unexploded ordnance (UXO) gains. With the Department of Defense (DoD) using over two million high-explosive (HE) munitions per year with a significant fraction as UXO, reducing costly range remediation and environmental restoration efforts will offer significant savings. The developed Seismic Acoustic Impact Monitoring Assessment (SAIMA) system is not designed for past ranges, but as a complementary technology to detect, locate within two meters, and classify UXO in near real-time to aid existing cleanup technologies. Feasibility and descriptions of system components have been previously provided ( VanDeMark et al., 2009 , 2010 , 2013 ). The current system is composed of multiple buried seismic arrays encircling a mortar or artillery impact area, communications from the arrays to a central processing station, and a processing unit that employs an algorithm suite based in the seismology and statistical analysis disciplines to detect, locate, and classify the HE or UXO impact. Recent deployments of the SAIMA system have demonstrated hardware maturity and algorithm refinements to nearly enable the goal of locations within two meters. A field deployment at Ft. Sill, Oklahoma, in June 2012 demonstrated acoustic locations at a large range ( QTSI, 2012 ). Subsequent systems tests with five arrays using a synthetic UXO source (kinetic source only; no acoustic phases) on a small field (80 m by 80 m) resolved locations within 0.5 m of ground truth with coverage ellipses at 0.1 m2 (time and azimuth). On a small mortar field, approximately 365 m by 480 m, simulated UXO (inert rounds) were located within an average mislocation distance of 4.1 m and confidence ellipses on the order of 5.8 m by 3.8 m. Scheduled field testing in the near future will validate the system.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

Reference13 articles.

1. Automatic S-Wave Picker for Local Earthquake Tomography

2. Erickson, J.P. Ortiz, A.M. Tinker, M.A. Owiesny, L.J. Hutchenson, K.D. and Kraft, G.D. 2003b, Seismic location methods and capabilities: QTSI Technical Report QTSI_03/0001, December 2003.

3. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3