Holocene East Asian Summer Monsoon Variation Recorded by Sensitive Grain Size Component from the Pearl River-Derived Mud in the Northern South China Sea

Author:

Xu Jin1ORCID,Huang Chao1234ORCID,Huang Xin1234ORCID

Affiliation:

1. 1 Laboratory for Coastal Ocean Variation and Disaster Prediction College of Ocean and Meteorology Guangdong Ocean University Zhanjiang Guangdong 524088 China gdou.edu.cn

2. 2 Laboratory for Marine Mineral Resources Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao 266071 China qnlm.ac

3. 3 Key Laboratory of Climate Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province Guangdong Ocean University Zhanjiang 524088 China gdou.edu.cn

4. 4 Key Laboratory of Space Ocean Remote Sensing and Application Ministry of Natural Resources China mnr.gov.cn

Abstract

Abstract To better understand the environmental significance of sediment grain size in continental shelf of the South China Sea (SCS), we carried out a detailed grain size study of sediments from the YJ Core, derived from the mud deposits of the northern SCS. Based on the grain size-standard deviation method, two sensitive grain size components were identified, namely, component 1 (8.2 ~ 9.3 μm) and component 2 (106.8 ~ 120.7 μm), respectively. The results indicate that the sensitive component 1 is likely to derive from fine-grained materials of the Pearl River. These fine-grained materials could be transported by the southwestward coastal current during the wet season, with the domination of the East Asian summer monsoon (EASM). Accordingly, the sensitive component 1 could be sensitive to climate change and has a great potential to reconstruct details of EASM variations. During the period of 7500-6800 cal yr BP, the sensitive component 1 may be controlled by both sea level change and EASM intensity. Besides, the curve of the sensitive component 1 in the YJ Core presents a strong EASM during the interval 6800-3500 cal yr BP and a weak EASM during the period of 3500-2000 cal yr BP, which is synchronous with other paleoclimate records in southern China. In the past 2000 years, the sensitive component 1 may reflect the increasing of human activities. It is essential to carry out more studies with higher resolution in mud areas to clarify a detailed historical evolution of EASM intensity over the whole Holocene.

Funder

Innovative Team Project of Guangdong Universities

Institute of Earth Environment, Chinese Academy of Sciences

Guangdong Ocean University

Guangdong Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3