The Effect of Roughness on the Nonlinear Flow in a Single Fracture with Sudden Aperture Change

Author:

Chen Zhou1ORCID,Tian Zhengying1,Zhan Hongbin2ORCID,Huang Jingtao1,Huang Yong1,Wei Yunbo1,Ma Xing1

Affiliation:

1. 1 School of Earth Science and Engineering Hohai University Nanjing 210098 China hhu.edu.cn

2. 2 Department of Geology and Geophysics Texas A&M University College Station TX USA tamu.edu

Abstract

Abstract Abrupt changes in aperture (sudden expansion and contraction) are commonly seen in naturally occurred or artificial single fractures. The relevant research mainly focuses on the changes in fluid properties caused by the sudden expansion of the aperture in smooth parallel fractures. To investigate the effects of roughness on the nonlinear flow properties in a single rough fracture with abruptly aperture change (SF-AC), the flow characteristics of the fractures under different Reynolds numbers Re (50~2000) are simulated by the turbulence k-ε steady-state modulus with the Naiver-Stokes equation. The results show that, in a rough SF-AC, the growth of the eddy and the flow path deflection of the mainstream zone are more obvious than those in a smooth SF-AC, and the discrepancies between the rough and smooth SF-ACs become even more obvious when the relative roughness and/or Re values become greater. The increase of the fracture roughness leads to the generation of more local eddies on the rough SF-ACs and enhances the flow path deflection in the sudden expansion fracture. The number of eddies increases with Re, and the size of eddy area increases linearly with Re at first. When Re reaches a value of 300-500, the growth rate of the eddy size slows down and then stabilizes. Groundwater flow in a rough SF-AC follows a clearly visible nonlinear (or non-Darcy) flow law other than the linear Darcy’s law. The Forchheimer equation fits the hydraulic gradient-velocity (J-v) better than the linear Darcy’s law. The corresponding critical Re value at which the nonlinear flow starts to dominate in a rough SF-AC is around 300~500.

Funder

National Natural Science Foundation of China

Key Science and Technology Special Program of Yunnan Province

National Basic Research Program of China

Fundamental Research Funds for the Central Universities

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3