Late Cenozoic Cooling History of the Xigaze Fore-Arc Basin along the Yarlung–Zangbo Suture Zone (Southern Tibet): New Insights from Low-Temperature Thermochronology

Author:

Song Shida12,He Zhiyuan1ORCID,Su Wenbo1,Zhong Linglin3,Zhong Kanghui3,Glorie Stijn4,Song Yifan5,De Grave Johan1

Affiliation:

1. Laboratory for Mineralogy and Petrology, Department of Geology, Ghent University 1 , Ghent 9000 , Belgium

2. State Key Laboratory of Continental Dynamics, Northwest University 2 , Xi'an 710069 , China

3. College of Earth Sciences, Chengdu University of Technology 3 , Chengdu 610059 , China

4. Department of Earth Sciences, School of Physical Sciences, The University of Adelaide 4 , Adelaide SA-5005 , Australia

5. Research Institute of Petroleum Exploration and Development 5 , PetroChina, Beijing 100083 , China

Abstract

Abstract The Tibetan Plateau is currently the widest and highest elevation orogenic plateau on Earth. It formed as a response to the Cenozoic and is still ongoing collision between the Indian and Eurasian plates. The Xigaze fore-arc basin distributed along the Indus–Yarlung suture zone in southern Tibet preserves important information related to the late Cenozoic tectonic and topographic evolution of the plateau. In this study, apatite fission track (AFT) thermochronology was carried out on twelve sandstone samples from the middle segment of the Xigaze basin and additionally on four sedimentary rocks from the neighboring Dazhuka (Kailas) and Liuqu Formations. Inverse thermal history modeling results reveal that the fore-arc basin rocks experienced episodic late Oligocene to Miocene enhanced cooling. Taking into account regional geological data, it is suggested that the late Oligocene-early Miocene (~27–18 Ma) cooling recognized in the northern part of the basin was promoted by fault activity along the Great Counter thrust, while mid-to-late Miocene-accelerated exhumation was facilitated by strong incision of the Yarlung and Buqu rivers, which probably resulted from enhanced East Asian summer monsoon precipitation. Sandstone and conglomerate samples from the Dazhuka and Liuqu Formations yielded comparable Miocene AFT apparent ages to those of the Xigaze basin sediments, indicative of (mid-to-late Miocene) exhumation soon after their early Miocene burial (> ~3–4 km). Additionally, our new and published low-temperature thermochronological data indicate that enhanced basement cooling during the Miocene prevailed in vast areas of central southern Tibet when regional exhumation was triggered by both tectonic and climatic contributing factors. This recent and widespread regional exhumation also led to the formation of the high-relief topography of the external drainage area in southern Tibet, including the Xigaze fore-arc basin.

Publisher

GeoScienceWorld

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3