Whole-Rock and Apatite Geochemistry of Late Triassic Plutonic Rocks in the Eastern Songpan-Ganzi Orogenic Belt: Petrogenesis and Implications for Tectonic Evolution

Author:

Yan Haoyu1ORCID,Xu Zhiqin1,Li Guangwei1,Zheng Bihai1,Gao Jianguo2,Long Xiaoping3

Affiliation:

1. State Key Laboratory for Mineral Deposits Research, Institute of Continental Geodynamics, School of Earth Sciences and Engineering, Nanjing University 1 , Nanjing, 210023 , China

2. College of Earth Sciences, Chengdu University of Technology 2 , Chengdu, 610059 , China

3. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University 3 , Xi'an, 710069 , China

Abstract

Abstract To constrain the late Triassic tectonic evolution of the Songpan-Ganzi orogenic belt, we present new whole-rock and in situ apatite geochemistry for plutonic rocks in its eastern margin. The Taiyanghe pluton can be classified into two rock types: dioritic and granitic rocks. The former exhibits low SiO2 and MgO contents but high Al2O3, Th, LREE contents, and Th/Yb and Th/Nb ratios, as well as low Ba/La and Ba/Th ratios and enriched Sr-Nd isotopic compositions, which, together with apatite geochemistry and Nd isotopes, indicate that they were derived from low degrees of partial melting of lithospheric mantle metasomatized by sediment-derived melts. The latter is characterized by high Sr and low Y and Yb, with elevated Sr/Y and (La/Yb)N ratios, implying an adakitic affinity. Notably, their similar Sr-Nd isotopic compositions indicate an origin from partial melts of a newly underplated lower crust. The Maoergai granitic rocks, characterized by high Sr and low Y and Yb contents with high Sr/Y and (La/Yb)N ratios, are indicative of adakitic rocks. In combination with the enriched whole-rock Sr-Nd isotopes and the apatite Nd isotopic data, we suggest that they were generated by the partial melting of the ancient thickened mafic lower crust. The Markam and Yanggonghai felsic granitoid rocks are peraluminous and similar to typical S-type granitoids, indicating an origin from remelting of the Triassic metasedimentary rocks. Based on the temporal-spatial relationship of the late Triassic plutonic rocks in the orogenic belt, we suggest that these rocks were formed in association with the roll-back and subsequent break-off of a subducted slab of the Paleo-Tethys Ocean. During the subduction, the formation of the Maoergai adakitic rocks was triggered by slab roll-back, whereas the magmatic “flare up” (ca. 216–200 Ma) was likely caused by slab break-off. This indicates that the final closure of the Paleo-Tethys Ocean happened in the end of the Triassic or Early Jurassic.

Publisher

GeoScienceWorld

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3