Carbon Isotopic Behavior During Hydrocarbon Expulsion in Semiclosed Hydrous Pyrolysis of Type I and Type II Saline Lacustrine Source Rocks in the Jianghan Basin, Central China

Author:

Li Shaojie12ORCID,Zheng Lunju3,Guo Xiaowen1ORCID,Han Yuanjia1

Affiliation:

1. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences 1 , Wuhan, 430074 , China

2. School of Geosciences, Yangtze University 2 , Wuhan, 430100 , China

3. Wuxi Research Institute of Petroleum Geology, SINOPEC 3 , Wuxi, Jiangsu, 214151 , China

Abstract

Abstract Organic carbon isotopic analysis is a significant approach for oil-source correlation, yet organic carbon isotopic behavior during oil expulsion from saline lacustrine source rocks is not well constrained, and this hinders its wide application for fingerprinting oils generated by saline lacustrine source rock. To resolve this puzzle, semiclosed hydrous pyrolysis was conducted on typical saline lacustrine source rocks from the Qianjiang Formation (type I kerogen) and Xingouzui Formation (type II kerogen) sampled in the Jianghan Basin, China, under high-temperature high-pressure conditions (T = 275℃–400℃; P = 65–125 MPa). Experimental results show that there is minor carbon isotopic fractionation (<3‰) between pyrolyzed and nonpyrolyzed retained oil fractions during the main oil generation/expulsion stage of both type I and II source rocks. Carbon isotopic fractionations between expelled and retained oil fractions are also minor (<2‰) during this stage. The δ13C values of retained and expelled oil fractions generated by the type I saline lacustrine source rock correlate positively with the degree of oil expulsion, whereas the influence of oil expulsion on the δ13C values of oil fractions generated by the type II source rock was not consistent. In addition, carbon isotopic analysis also unravels the mixing of oil-associated gases with different maturity levels and/or generated via different processes. Outcomes of this study demonstrate that oil expulsion from type I and II saline lacustrine source rocks cannot be able to result in large-degree carbon isotopic fractionation, indicating that carbon isotopic analysis is a feasible approach for conducting oil-source correlation works in saline lacustrine petroleum systems.

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3