Numerical Modeling of Melting Processes During Slab Break-off: Insights Into Tectonic Setting for Massif-Type Anorthosites

Author:

Yuan Qian1ORCID

Affiliation:

1. Division of Geological and Planetary Sciences, California Institute of Technology 1 , Pasadena, CA, 91125 , USA

Abstract

Abstract The concept that lithosphere detachment or break-off has long been conceived as a viable mechanism to explain prominent geological phenomena in Earth’s crust and the surface. One of the strengths of slab delamination mechanism is that it can account for the extensive magmatism in active orogenic belts due to the upwelling of the asthenosphere after the slab break-off. However, in the last 20 years, geodynamic simulations show that the inflow of the asthenosphere upon slab break-off is insufficient to cause significant melting of the overriding lithosphere adjacent to the slab window. The primary reasons include the occurrence of slab break-off at a location that is too deep to effectively heat the overriding lithospheric mantle. Another factor is the presence of a thin film of crustal material that is retained during the slab break- off, inhibiting a significant thermal perturbation within the lithosphere. In this work, we couple petrological–thermomechanical simulations with magmatic melting processes to examine the lithospheric melting and surface lithological expression associated with slab break-off. Our work shows that in the early Earth when the mantle temperature is relatively higher, shallow slab break-off can give rise to significant lithospheric melting during the development of slab break-off. Moreover, because the slab becomes weaker in the earlier hotter mantle, it may break-off prior to the stage of continental collision, thus the magmatism it induced may not give a direct constraint on the time of continental collision. Our study has implications for the interpretation of geological and tomography studies in orogenic belts. It also provides insights into reconciling conflicts between geodynamic and geological studies regarding slab break off-induced melting and magmatism.

Publisher

GeoScienceWorld

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3